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Mathematics

• Linear Algebra
• Probability and Statistics
• Machine Learning Basics
• Optimization



Linear Algebra and Probability



Scalars, Vectors, and Matrices

• Scalars: a single value, e.g., 𝑥 = 1.5 ∈ 𝑅
• Vectors: An array of values. A vector x with n dimension:

• Matrices: A matrix is a 2-D array of numbers, so each element is 
identified by two indices instead of just one

𝒙 =

𝑥!
𝑥"
…
𝑥#

∈ 𝑅#

𝑨 = 𝐴!!, 𝐴!"
𝐴"! , 𝐴""

∈ 𝑅" × "



Transpose of Vectors and Matrices

• Transpose of a vector x: 

• Transpose a matrix 𝑨: 𝑨𝑻 𝒊𝒋 = 𝑨𝒋𝒊

𝒙𝑻 = 𝑥!, 𝑥", … , 𝑥#𝒙 =

𝑥!
𝑥"
…
𝑥#

∈ 𝑅#

𝑨 = 𝐴!!, 𝐴!"
𝐴"! , 𝐴""

𝑨𝑻 = 𝐴!!, 𝐴"!
𝐴!" , 𝐴""



Operations

• Given two vectors:

• Then

• Inner Product

𝒙 =

𝑥!
𝑥"
…
𝑥#

∈ 𝑅# 𝒚 =

𝑦!
𝑦"
…
𝑦#

∈ 𝑅#

𝒙 + 𝒚 =

𝑥! + 𝑦!
𝑥" + 𝑦"
…

𝑥# + 𝑦#

𝒙 − 𝒚 =

𝑥! − 𝑦!
𝑥" − 𝑦"
…

𝑥# − 𝑦#

𝒙 + 𝒚 = 𝑥$𝑦 = 𝑥%𝑦% + 𝑥&𝑦& +⋯+ 𝑥'𝑦' = 0
()%

'

𝑥(𝑦(



Operations

• Multiply scalar and vector

• Multiplying Matrices and Vectors: C = AB

• Note that the number of columns in A must be equal to the number 
of rows in B

𝒙 =

𝑥!
𝑥"
…
𝑥#

∈ 𝑅#𝑎 ∈ 𝑅 𝑎𝒙 =

𝑎𝑥!
𝑎𝑥"
…
𝑎𝑥#

∈ 𝑅#

𝑪-. =/
/

𝑨-/𝑩/.



Norms

• 𝐿* norm of a vector 𝒙

• A common one is 𝐿& norm 

𝒙 𝒑 = /
-

𝑥- 1
!
1

𝒙 𝟐 = /
-

𝑥-"



Probabilities

• Many real-world events are not certain. Probabilities are used to 
capture the uncertainties.
• Example:
• What would be the outcome if I roll a dice?
• What would be the weather like next week?



Random Variables & Probability Distributions

• A random variable is a variable that can take on different values 
randomly 
• For example
• X1 represents the outcome of rolling a dice 𝑋1 ∈ {1,2,3,4,5,6}
• X2 represents tomorrow’s weather

• A probability distribution is a description of how likely a random
variable p(X) or a set of random variables is to take on each of its
possible states p(X1, X2, …)



Discrete Random Variables and Probability
Mass Functions
• A discrete random variable takes on a finite number of values
• A probability distribution over discrete random variables can be

described using a probability mass function (PMF): 𝑝 (𝑋)

• Example: discrete uniform distribution

𝑝 𝑋 = 𝑥- =
1
𝑛
, ∀𝑖

𝑝 𝑋 = 𝑥! ≥ 0, ∀𝑖

4
!

𝑝 𝑋 = 𝑥! = 1



Continuous Random Variables and Probability
Density Functions
• The continuous random variables are described with probability

density functions f(x):

• Example: continuous uniform distribution

𝑓 𝑥 ≥ 0, ∀𝑥 ∈ 𝑋

A𝑓 𝑥 𝑑𝑥 = 1

𝑓 𝑥 =
1

𝑏 − 𝑎
, ∀𝑎 ≤ 𝑥 ≤ 𝑏



Properties of Probability Distributions

• Sum rule: 𝑝 𝑥 = ∑6 𝑝 𝑥, 𝑦

• Product rule: 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Bayes’ Rule: 𝑝 𝑦|𝑥 =
𝑝 𝑥 𝑦 𝑝 𝑦

𝑝(𝑥)



Expectation, Variance

• Expectation: the average value of X when drawn from 𝑝 (𝑋)

• Variance: a measure of how much the value x vary as we sample 
different values of X from its probability distribution 𝑝 (𝑋)

𝐸 𝑋 =/
-

𝑝(𝑋 = 𝑥-)𝑥-

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 "



Binary Variable

• A Binary variable 𝑋 ∈ 0, 1 , e. g. , Flipping a coin. X = 1 representing 
heads and X = 0 representing tails. 
• Define the probability of obtaining heads as:

𝑝 𝑋 = 1 = 𝑢
𝑝 𝑋 = 0 = 1 − 𝑢

𝐸 𝑋 = 𝜇 𝑉𝑎𝑟 𝑋 = 𝜇(1 − 𝜇)



Binomial Distribution

• The distribution of the number of observations of X=1 (e.g. the 
number of heads).
• The probability of observing m heads given N coin flips and a  
parameter µ is given by:

• The mean and variance can be easily derived as:

𝑝 𝑚 ℎ𝑒𝑎𝑑𝑠 𝑁, 𝜇 = 𝐵𝑖𝑛 𝑚 𝑁, 𝜇 = 𝑁
𝑚 𝜇3 1 − 𝜇 453

𝐸[𝑚] = /
367

4

𝑚𝐵𝑖𝑛 𝑚 𝑁, 𝜇 =𝑁𝜇

𝑉𝑎𝑟[𝑚] = /
367

4

𝑚 − 𝐸 𝑚 "𝐵𝑖𝑛 𝑚 𝑁, 𝜇 =𝑁𝜇 1 − 𝜇



Example

• Histogram plot of the Binomial distribution as a function of m for 
N=10  and µ = 0.25.



Multinomial Variables

• Consider a random variable that can take on one of K possible mutually  exclusive states 
(e.g. roll of a dice).

•We will use so-called 1-of-K encoding scheme.
• If a random variable can take on K=6 states, and a particular  observation of the variable 
corresponds to the state x3=1, then x will be  resented as:

• If we denote the probability of xk=1 by the parameter µk, then the  distribution over x 
is defined as:



Multinomial Variables

• Multinomial distribution can be viewed as a generalization of 
Bernoulli  distribution to more than two outcomes.

• It is easy to see that the distribution is normalized:

• and



Maximum Likelihood Estimation

•Suppose we observed a dataset

•We can construct the likelihood function, which is a function of µ.

•Note that the likelihood function depends on the N data points only  
through the following K quantities:

•which represents the number of observations of xk=1.

•These are called the sufficient statistics for this distribution.



Maximum Likelihood Estimation

• To find a maximum likelihood solution for µ, we need to maximize
the  log-likelihood taking into account the constraint that
• Forming the Lagrangian:

which is the fraction of observations for which xk=1.



Gaussian Univariate Distribution

• In the case of a single variable x, Gaussian distribution takes form:

which is governed by two parameters:

- µ (mean)
- 𝜎!(variance)

• The Gaussian distribution satisfies:



Shannon Entropy

• The entropy H(X) of a distribution P(X) characterizes the amount of  
uncertainty of the random variable X.

• Example: X is a binary variable 

𝐻 𝑋 = −/𝑃 𝑥 log 𝑃 𝑥 = −𝔼8~: log 𝑃(𝑥)



Kullback-Leibler (KL) divergence

• KL-divergence: measure the distance between two probability 
distributions P(x) and Q(x)

• Note:
• 𝐷;<(𝑃| 𝑄 ≥ 0
• 𝐷;<(𝑃| 𝑄 = 0 if and only if P=Q
• 𝐷;<(𝑃| 𝑄 ≠ 𝐷;<(𝑄| 𝑃

𝐷;<(𝑃| 𝑄 = 𝔼8~: log
𝑃 𝑥
𝑄 𝑥

= 𝔼8~:[log 𝑃 𝑥 − log𝑄(𝑥)]



Cross-Entropy H(P, Q)

• Another distance function to measure two distributions P(x) and Q(x) 

• We can find that 

• Minimizing the cross-entropy with respect to Q is equivalent to
minimizing the KL divergence.

𝐶𝐸(𝑃, 𝑄) = −𝔼7~9 log𝑄(𝑥)

𝐶𝐸 𝑃, 𝑄 = 𝐻 𝑃 + 𝐷:;(𝑃||𝑄)
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Maximum Likelihood Estimation

•Suppose we observed i.i.d data
•We can construct the log-likelihood function, which is a function of µ 
andΣ:

• Note that the likelihood function depends on the N data points only  
though the following sums:

Sufficient Statistics



Maximum Likelihood Estimation

• To find a maximum likelihood estimate of the mean, we set the  
derivative of the log-likelihood function to zero:

and solve to obtain:

•Similarly, we can find the ML estimate of Σ:



Maximum Likelihood Estimation
•Evaluating the expectation of the ML estimates under the true
distribution, we obtain: Unbiased estimate

•Note that the maximum likelihood estimate of Σ is biased.

•We can correct the bias by defining a different estimator:

Biased estimate



Discussion: Connections between Maximum
Likelihood, KL-Divergence, and Cross Entropy
• Let P(x) be the empirical data distribution
• Let Q(x) be the distribution specified by the machine learning (a.k.a.

model distribution)



Multivariate Gaussian Distribution

• For a D-dimensional vector x, the Gaussian distribution takes form:

which is governed by two parameters:

- µ is a D-dimensional meanvector.
- Σis a D by D covariance matrix.

and | Σ| denotes the determinant ofΣ.

• Note that the covariance matrix is a symmetric positive definite 
matrix.


