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Mathematics

* Linear Algebra
* Probability and Statistics
* Machine Learning Basics

* Optimization



Linear Algebra and Probability



Scalars, Vectors, and Matrices

* Scalars: a single value, e.g., x =15 €R

* Vectors: An array of values. A vector x with n dimension:
X1
X
x=|"°|eRr
xn

* Matrices: A matrix is a 2-D array of numbers, so each element is
identified by two indices instead of just one

A111A12] 2
A= [ € R2%?2
A21 IAZZ



Transpose of Vectors and Matrices

* Transpose of a vector x:
° I . T — ..
Transpose a matrix A: (A )ij = Aji

A21 1A22 A12 1A22



Operations

. X4 V1
* Given two vectors: X Vo
x=("*)ern y=\| .. |€R"
X Vn
X1+ Y1 X1 =M1
X, + Xp —
* Then x+y =["2"7 x—y =" 7

* Inner Product
n

X'y =Xy =X+ XY, F ot XY = Z XYk

k=1



Operations

* Multiply scalar and vector

Xl axl
X ax

a €R x=|"%|ern ax = 2 leRn
X, ax,

* Multiplying Matrices and Vectors: C = AB

Cij = zAikBkj
K
* Note that the number of columns in A must be equal to the number
of rows in B



Norms

 LP norm of a vector x

I1], = (ZW);

i

e« A common one is L% norm

Ixll, = |} x
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Probabilities

* Many real-world events are not certain. Probabilities are used to
capture the uncertainties.

* Example:
e What would be the outcome if | roll a dice?
e What would be the weather like next week?
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Random Variables & Probability Distributions

e A random variable is a variable that can take on different values
randomly

* For example
* X1 represents the outcome of rolling a dice X1 € {1,2,3,4,5,6}
* X2 represents tomorrow’s weather

* A probability distribution is a description of how likely a random
variable p(X) or a set of random variables is to take on each of its
possible states p(X1, X2, ...)



Discrete Random Variables and Probability
Mass Functions

* A discrete random variable takes on a finite number of values

* A probability distribution over discrete random variables can be
described using a probability mass function (PMF): p (X)

p(X = xl-) > 0,Vi

ZP(X=Xi) =1

* Example: discrete uniform distribution
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Continuous Random Variables and Probability

Density Functions

* The continuous random variables are described with probability

density functions f(x):

f(x)=0,VvxeX f(X)
Jf(x)dx =1 1
S ITHTT o

* Example: continuous uniform distribution

Va<x<b

flx) =

b—a — ~—  ~



Properties of Probability Distributions
* Sumrule: p(x) = X, p(x,y)

* Product rule: p(x,y) = p(x|y)p(y)

p(x|y)p(y)
p(x)

* Bayes’ Rule: p(y|x) =



Expectation, Variance

* Expectation: the average value of X when drawn from p (X)
E[X] = ) p(X = x)x;
i

* Variance: a measure of how much the value x vary as we sample
different values of X from its probability distribution p (X)

Var[X] = E [(X _ E(X))2]



Binary Variable

A Binary variable X € {0, 1}, e.g., Flipping a coin. X = 1 representing
heads and X = 0 representing tails.

* Define the probability of obtaining heads as:

p(X=1)=u
p(X=0)=1—-u

EX]=u Var|X] = u(1 — p)



Binomial Distribution

e The distribution of the number of observations of X=1 (e.g. the
number of heads).

* The probability of observing m heads given N coin flips and a
parameter U is given by:

. N _
p(m heads|N,u) = Bin(m|N, u) = (m) U1 = phm

 The mean and variance can be easily derived as:

E[m] = 2 mBin(m|N,u) =Nu

mO

Var[m Z(m E[m])2Bin(m|N, 1) = Nu(1 — 1)

m=0



Example

* Histogram plot of the Binomial distribution as a function of m for
N=10 and uy =0.25.
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Multinomial Variables

e Consider a random variable that can take on one of K possible mutually exclusive states
(e.g. roll of a dice).

* We will use so-called 1-of-K encoding scheme.

 If arandom variable can take on K=6 states, and a particular observation of the variable
corresponds to the state x;=1, then x will be resented as:

x = (0,0,1,0,0,0)*

* If we denote the probability of x,=1 by the parameter y,, then the distribution over x
is defined as:

p(xlp) = [ me*  Ve:me>0 and S =1



Multinomial Variables

* Multinomial distribution can be viewed as a generalization of
Bernoulli distribution to more than two outcomes.

p(x|p) = Hu

* It is easy to see that the distribution is normalized:

K
Y oplp) = =1
X k=1

* and

Elx|p] = ZPXIMX— 15 i) = p



Maximum Likelihood Estimation

* Suppose we observed a dataset D = {x1,...,Xn}

* We can construct the likelihood function, which is a function of y.
N K K K
p@lw) = T TL i = TLm " = T
k=1 k=1

n=1 k=1
* Note that the likelihood function depends on the N data points only
through the following K quantities:

mir — ank, k = 1, ...,K.
n
* which represents the number of observations of x,=1.

* These are called the sufficient statistics for this distribution.



Maximum Likelihood Estimation

N K Z N K
p(Dlp) = || H k= H o) = ][
n=1 k= k=1

* To find a maximum I|keI|hood solutlon for u, we need to maximize
the log-likelihood taking into account the constraint that >, u. =1

* Forming the Lagrangian:

K K
kalnuk+)\ (Z,ukl)
k=1 k=1

m
pe=—mp/x === A=-N

which is the fraction of observations for which x,=1.



Gaussian Univariate Distribution

* In the case of a single variable x, Gaussian distribution takes form:

N(z|p,a?) 1 1
Nl o) = o exe { oo =}

/\

which is governed by two parameters:

- M (mean)
—  ¢?(variance)

;'1 x
e The Gaussian distribution satisfies:

N(z|p,0%) >0

/00 N (z|p,0?) dz =1

— 0



Shannon Entropy

* The entropy H(X) of a distribution P(X) characterizes the amount of
uncertainty of the random variable X.

H(X) = —z P(x)log P(x) = —F,_p log P(x)

* Example: X is a binary variable !

0.5
PriX=1)



Kullback-Leibler (KL) divergence

* KL-divergence: measure the distance between two probability
distributions P(x) and Q(x)

P(x)
Q(x)

Dk (P|1Q) = Ex-p [log = Ex~p[log P(x) —log Q(x)]

* Note:
* Dk (PllQ) =0
* Di; (P||1Q) = 0if and only if P=Q
* D (P|1Q) # Dk (Q]|P)




Cross-Entropy H(P, Q)

* Another distance function to measure two distributions P(x) and Q(x)

CE(P, Q) = —lEy-p log Q(x)
* We can find that
CE(P,Q) = H(P) + Dk, (P||Q)

* Minimizing the cross-entropy with respect to Q is equivalent to
minimizing the KL divergence.
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Maximum Likelihood Estimation

*Suppose we observed i.i.d data X = {x;,...,xnx}.

* We can construct the log-likelihood function, which is a function of u
and

N
ND N 1 _
Inp(X[p, %) = ——=n(27) — - In[X%] - 5 > (xn — 1) =7 (%0 — )

n=1

* Note that the likelihood function depends on the N data points only
though the following sums:

Sufficient Statistics

N N
E X, E ang



Maximum Likelihood Estimation

* To find a maximum likelihood estimate of the mean, we set the
derivative of the log- Iikelihood function to zero:

0
%lnp (X, X ZZ =0

and solve to obtain:

Ky = %an

n=1

Similarly, we can find the ML estimate of X:

N
1
ML = N 2 — pin) (X0 — o)



Maximum Likelihood Estimation

* Evaluating the expectation of the ML estimates under the true

distribution, we obtain: — Unbiasedestimate
Elpme] =
N-1
ESyy] = ——

N 2. ¥~ Biased estimate

* Note that the maximum likelihood estimate of X is biased.

*We can correct the bias by defining a different estimator:

MML MML)T-

||
an



Discussion: Connections between Maximum
Likelihood, KL-Divergence, and Cross Entropy

 Let P(x) be the empirical data distribution

e Let Q(x) be the distribution specified by the machine learning (a.k.a.
model distribution)



Multivariate Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

N (x|p,X) = (%;D/Q |2|11/2 exp {—%(X — )2 (x - u)}

ol
’ which is governed by two parameters:

@ — M is a D-dimensional meanvector.

— Xis a D by D covariance matrix.

and | 2| denotes the determinant of X.

* Note that the covariance matrix is a symmetric positive definite
matrix.



