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Graph from Albert-Laszlé Barabdsi’ s SIGIR09 keynote



Protein-Protein Interaction Graph
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https://www.ebi.ac.uk/training/online /course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-networks



Drug-Protein Interaction Graph
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Various Applications on Graphs

* Predicting whether a user is a democratic or republican in Facebook?
e Recommending friends in social networks

* Predicting how information diffuses over social networks

* Predicting the roles of proteins in a protein-protein interaction graphs
* Predicting the chemical properties of molecules

* Most of these applications require good feature representation of
graphs!!



Challenges of Graph Representation Learning

* Existing deep neural networks are designed for data with regular-structure
* images, text, and speech
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* Graphs are very complex

e Arbitrary structures
* Large-scale: more than millions of nodes and billions of edges
* Heterogeneous: directed/undirected, binary/weighted/typed



Problem Definition

* Given a graph G = (V,E), Visthe set of nodes, E is the set of edges.
Two types of information are given as input:

* A feature description x; € RP for each node v;. The whole node features can
be summarized intoa N X D feature matrix X.

* The graph structure, usually in the form of adjacency matrix A. A;; is the
weight between node i and j.

e Goal: produce node representations, denotedasH(an N X F
feature matrix, F is the dimension of each node representation).



Recap: Convolutional Neural Networks for
Learning Image Representations

e Convolutional Filters
e Local feature detectors
* Afeature is learned in each local receptive field by a convolutional filter




Local Receptive Field on Graphs

* How should we define local receptive fields on graphs?
* local subgraphs

* However, there are no orders between the neighbors
* In images, the neighbors of a node can follow specific order

Graph



The Framework of Graph Neural Networks

* Multi-layer Graph Neural Networks
« H% =X, the initial node feature matrix
* |teratively update the node representations

* The k;y, layer of graph neural network will update node

representations from H* to H**1

* The final node representations: H*
* Used for some supervised tasks
e E.g., node classification

Hidden layer

Hidden layer
p

RelLU

—=




Supervised Training

* Train a classifier f based on the final node representations H*

* The overall objective function:

IELabeled

2 loss(f(H}), y:) 2

Hidden laye




How to Update the Node Representations?

* In each layer of graph neural networks, for each node

* AGGREGATE the information from the neighbors
* COMBINE information from neighbors with its own information

AGGREGATE COMBINE
a® = AGGREGATEX({hk~1:u e N(v)}) hX = COMBINEX(h~1, ak)



Graph Convolutional Networks

Kipf et al. 2017. Semi-supervised Classification with Graph Convolutional Networks.



Graph Convolutional Networks
(GCNs, Kipf et al. 2013)

Hidden layer

* A: the adjacency matrix
* Add selflink: A =A4+1 { B EaEe N
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d;: degree of node i (in matrix A)
WK: transformation matrix in layer k
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The Computation Graph

* Two layers of GCNs
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Can we change the weights of the edges?

* In GCNs, the influence from node i to node j is determined by the

weight of the edge, degree of node i and j, i.e. Zii;j

* i.e., determined by the graph structure

* However,

* The edges could be very noisy
* May not be optimal for specific tasks



Graph Attention Networks

Velickovic¢ et al. 2017. Graph Attention Networks



Graph Attention Networks (GATs)

 We can use ATTENTION mechanism to learn the weights between the
edges
e Query: current node
 Memory: neighbors (including node itself).

* The attention between node i and:

exp (LeakyReLU (aT [wﬁinwﬁj]))

Oéij = = -
D hen, €XD (LeakyReLU <§T (Wh; Hth])) | |: vector concatenation



Graph Attention Networks (GATs)

* Aggregate the information from the neighbors with attention
0 1
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 Note that each node can attend to the node itself




Multi-head Attention

* Following the multi-head attention in the Transformer model, multi-
head can be used

* The new node representation can be the concatenation or average of
the outputs of different attention heads

\J =
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A Practical Issue

 Some nodes may have too many neighbors

 Randomly sample a fixed number of neighbors in each iteration of
SGD (Hamilton et al. 2017).

(a) Normal Conv Aggregator (b) Attention Aggregator (c) GraphSAGE Aggregator

Image from (Wang et al. 2019)



Neural Message Passing Networks

Gilmer et al. 2017. Neural Message Passing for Quantum Chemistry.



Neural Message Passing Networks
(MPNNs, Gilmer et al. 2017)

* All existing graph neural networks can be formulated as the general

framework of neural message passing
* |teratively pass neural messages (vectors) between nodes

 Different Functions
* Message Function
* Node Update Function



Message Passing Phase

AGGREGATE: Tt = > M;(hl, bl epy)
weN (v)

COMBINE: Rt = U (B, mEth)

v

M, : message function

Ut : vertex update function



What if we want to learn the representations
of entire graphs?

* Learn the representations of molecular graphs Ch{i OUD
* For predicting the chemical properties of molecules

C -
S A

* Add a readout function, which is applied to the node representations
in the last layer:

y = R({hf v e G} R : readout function

* y is the representation of entire graph

* R can be some simple functions such summation or average



Applications: Recommendation

* Predict the most relevant items given users
e User-item and item-item graphs

Qu et al. An End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation.



Applications: Natural Language Understanding

* Semantic Role Labeling
* Encoding Sentences with Graph Convolutional Networks

Figure 1: Anexample sentence annotated with se-

mantic (top) and syntactic dependencies (bottom).
J layers
BILSTM




Applications: Drug Discovery

 Drug repurposing
* Protein-drug-disease graph

* Molecule properties prediction
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Input 2D graph

—

L] ‘_ '\"..
- L ]
[ s
! |
. [ 3
Graph ’ i, SR
ConvMet —— tee o /
Model \ Y e,
; '--'
. -
| A " . - !
" . . ¥ 3

* Travelling Salesman Problem
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Edge prediction heat-map
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Applications: Combinatorial Optimization

Valid TSP tour

Joshi et al. An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem.




Applications: Transportation

* Traffic flow prediction
e Road graph
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Yu et al. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI'18.



Applications: Social Influence Prediction

* Social influence prediction

* Predict the status of a user given the action statuses of her neighbors in social
network

Qiu et al. DeeplInf: Social Influence Prediction with Deep Learning.



Implementations of GNNs

* PyTorch Geometric:
https://pytorchgeometric.readthedocs.io/en/latest/

* Deep Graph Library: https://www.dgl.ai/



https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai/

Example: GCN (Kipf et al.) in Pytorch Geometric

e https://github.com/rustyls/pytorch seometric/blob/master/examples/gcn.py

class Net(torch.nn.Module):
def __init__ (self):
super(Net, self).__init_ ()
GCNConv(dataset.num_features, 16, cached=True,
normalize=not args.use_gdc)
self.conv2 = GCNConv(16, dataset.num_classes, cached=True,
normalize=not args.use_gdc)
ChebConv(data.num_features, 16, K=2)
ChebConv(16, data.num_features, K=2)

self.convl

# self.convl

# self.conv2

def forward(self):
x, edge_index, edge_weight = data.x, data.edge_index, data.edge_attr
x = F.relu(self.convl(x, edge_index, edge_weight))
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index, edge_weight)
return F.log_softmax(x, dim=1)


https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py

Thanks!
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