
Graph Neural Networks
Jian Tang 

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

1

mailto:jian.tang@hec.ca


Social Networks

Facebook Twitter

2



3
Graph from Albert-László Barabási’ s SIGIR09 keynote



Protein-Protein Interaction Graph

https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-networks
4



Drug-Protein Interaction Graph

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002503 5



Molecules

6



Various Applications on Graphs

• Predicting whether a user is a democratic or republican in Facebook?

• Recommending friends in social networks

• Predicting how information diffuses over social networks

• Predicting the roles of proteins in a protein-protein interaction graphs

• Predicting the chemical properties of molecules

• …

• Most of these applications require good feature representation of 
graphs!!

7



Challenges of Graph Representation Learning

• Existing deep neural networks are designed for data with regular-structure
• images, text, and speech

• Graphs are very complex
• Arbitrary structures

• Large-scale: more than millions of nodes and billions of edges

• Heterogeneous: directed/undirected, binary/weighted/typed

8



Problem Definition

• Given a graph 𝐺 = 𝑉, 𝐸 , V is the set of nodes, E is the set of edges.
Two types of information are given as input:
• A feature description 𝒙𝑖 ∈ 𝑅𝐷 for each node 𝑣𝑖. The whole node features can

be summarized into a 𝑁 × 𝐷 feature matrix X.

• The graph structure, usually in the form of adjacency matrix A. 𝐴𝑖𝑗 is the
weight between node i and j.

• Goal: produce node representations, denoted as H ( an 𝑁 × 𝐹
feature matrix, F is the dimension of each node representation).



Recap: Convolutional Neural Networks for
Learning Image Representations
• Convolutional Filters

• Local feature detectors

• A feature is learned in each local receptive field by a convolutional filter
Local Connectivity 

•  Example:  200x200 image, 40K hidden units, filter size 10x10, 

4M parameters! 

Ø This parameterization is good 

when input image is registered 



Local Receptive Field on Graphs

• How should we define local receptive fields on graphs?
• local subgraphs

• However, there are no orders between the neighbors
• In images, the neighbors of a node can follow specific order

Image Graph



The Framework of Graph Neural Networks

• Multi-layer Graph Neural Networks
• 𝐻0 = X, the initial node feature matrix

• Iteratively update the node representations

• The 𝑘𝑡ℎ layer of graph neural network will update node
representations from 𝐻𝑘 to 𝐻𝑘+1

• The final node representations: 𝐻𝐿

• Used for some supervised tasks

• E.g., node classification

𝐻0 𝐻1 𝐻2 𝐻𝐿…



Supervised Training

• Train a classifier f based on the final node representations 𝐻𝐿

• The overall objective function:

𝐻0 𝐻1 𝐻2 𝐻𝐿…

𝑂 = ෍

𝑖∈𝐿𝑎𝑏𝑒𝑙𝑒𝑑

𝑙𝑜𝑠𝑠 𝑓 𝐻𝑖
𝐿 , 𝑦𝑖



How to Update the Node Representations?

• In each layer of graph neural networks, for each node
• AGGREGATE the information from the neighbors

• COMBINE information from neighbors with its own information

AGGREGATE

av
𝑘 = 𝐀𝐆𝐆𝐑𝐄𝐆𝐀𝐓𝐄𝐤({hu

𝑘−1: 𝑢 ∈ 𝑁(𝑣)}) hv
𝑘 = 𝐂𝐎𝐌𝐁𝐈𝐍𝐄𝐤(hv

𝑘−1, 𝑎𝑣
𝑘)

COMBINE



Graph Convolutional Networks

Kipf et al. 2017. Semi-supervised Classification with Graph Convolutional Networks.



Graph Convolutional Networks
(GCNs, Kipf et al. 2013)
• A: the adjacency matrix

• Add self link: መ𝐴 = 𝐴 + 𝐼

hi
𝑘 = 𝜎( ෍

𝑗∈{𝑁 𝑖 ∪𝑖}

ො𝑎𝑖𝑗

𝑑𝑖𝑑𝑗
Wkhj

𝑘−1)

hi
𝑘 = 𝜎( ෍

𝑗∈𝑁 𝑖

𝑎𝑖𝑗

𝑑𝑖𝑑𝑗
Wkhj

𝑘−1 +
1

𝑑𝑖
Wkh𝑖

𝑘−1)

𝑑𝑖: degree of node i (in matrix መ𝐴)
Wk: transformation matrix in layer k



The Computation Graph

• Two layers of GCNs

h
(1)

A

h
(1)

N (A )

h
(2)
A

h
(1)
B

h
(1)
C

h
(1)
D

INPUT GRAPH

TARGET NODE B

D

E

F

BATCH OF NETWORKS

γ
C

A

B

C

D

A

A

A

C

F

B

E

A

(See Algorithm 1)

convol ve(2)
convol ve(1)

Figure 1: Overview of our model architecture using depth-2 convolutions (best viewed in color). Lef t: A smal l example input

graph. Right: The 2-layer neural network that computes the embedding h
(2)
A

of nodeA using the previous-layer representation,

h
(1)
A

, of node A and that of i ts neighborhood N (A) (nodes B,C,D). (However, the notion of neighborhood is general and not al l

neighborsneed to be included (Section 3.2).) Bottom: The neural networks that compute embeddings of each node of the input

graph. While neural networks di er f rom node to node they al l share the same set of parameters (i .e., the parameters of the
(1) and (2) functions; Algori thm 1). Boxes with the same shading patterns share parameters; γ denotes an

importance pool ing function; and thin rectangular boxes denote densely-connected multi -layer neural networks.

• On-the- y convolutions: Traditional GCN algorithms per-

form graph convolutions by multiplying feature matrices by

powers of the full graph Laplacian. In contrast, our PinSage algo-

rithm performs e cient, localized convolutions by sampling the

neighborhood around a node and dynamically constructing a

computation graph from this sampled neighborhood. These dy-

namically constructed computation graphs (Fig. 1) specify how

to perform a localized convolution around a particular node, and

alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a

producer-consumer architecture for constructing minibatches

that ensures maximal GPU utilization during model training. A

large-memory, CPU-bound producer e ciently samples node

network neighborhoods and fetches the necessary features to

de nelocal convolutions, whileaGPU-bound TensorFlow model

consumes these pre-de ned computation graphs to e ciently

run stochastic gradient decent.

• E cient MapReduce inference: Given a fully-trained GCN

model, we design an e cient MapReduce pipeline that can dis-

tribute the trained model to generate embeddings for billions of

nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we

also introduce new training techniques and algorithmic innova-

tions. These innovations improve the quality of the representations

learned by PinSage, leading signi cant performance gains in down-

stream recommender system tasks:

• Constructing convolutions via random walks: Taking full

neighborhoods of nodes to perform convolutions (Fig. 1) would

result in huge computation graphs, so we resort to sampling.

However, random sampling issuboptimal, and wedevelop anew

technique using short random walks to sample the computa-

tion graph. An additional bene t is that each node now has an

importance score, which we use in the pooling/aggregation step.

• Importance pool ing: A corecomponent of graph convolutions

is the aggregation of feature information from local neighbor-

hoods in the graph. We introduce a method to weigh the impor-

tance of node features in this aggregation based upon random-

walk similarity measures, leading to a 46%performance gain in

o ine evaluation metrics.

• Curr iculum training: Wedesign acurriculum training scheme,

where the algorithm is fed harder-and-harder examples during

training, resulting in a 12%performance gain.

We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-

cation where users interact with pins, which are visual bookmarks

to online content (e.g., recipes they want to cook, or clothes they

want to purchase). Usersorganize thesepins into boards, which con-

tain collections of similar pins. Altogether, Pinterest is the world’s

largest user-curated graph of images, with over 2 billion unique

pins collected into over 1 billion boards.

Through extensive o ine metrics, controlled user studies, and

A/B tests, we show that our approach achieves state-of-the-art

Figure from Ying et al. 2018



Can we change the weights of the edges?

• In GCNs, the influence from node i to node j is determined by the

weight of the edge, degree of node i and j, i.e.
𝑎𝑖𝑗

𝑑𝑖𝑑𝑗

• i.e., determined by the graph structure

• However,
• The edges could be very noisy

• May not be optimal for specific tasks



Graph Attention Networks

Veličković et al. 2017. Graph Attention Networks



Graph Attention Networks (GATs)

• We can use ATTENTION mechanism to learn the weights between the
edges
• Query: current node

• Memory: neighbors (including node itself).

• The attention between node i and j:

Published as a conference paper at ICLR 2018

↵ i j

~a

so
ft

m
ax

j

W ~hi W ~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵

16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1

5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W ~hi , W ~hj ) employed by our model, parametrized

by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ~h0
1.

applying anonlinearity, σ):

~h0
i = σ

0

@
X

j 2 N i

↵ i j W ~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k= 1

σ

0

@
X

j 2 N i

↵k
i j W k~hj

1

A (5)

where k represents concatenation, ↵k
i j are normalized attention coefficients computed by the k-th

attention mechanism (ak ), and W k is thecorresponding input linear transformation’sweight matrix.
Note that, in this setting, the final returned output, h0, will consist of K F 0 features (rather than F 0)
for each node.

Specially, if weperform multi-head attention on thefinal (prediction) layer of thenetwork, concate-
nation isno longer sensible—instead, weemploy averaging, and delay applying thefinal nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h0
i = σ

0

@
1

K

KX

k= 1

X

j 2 N i

↵k
i j W k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it ishighly efficient: theoperation of theself-attentional layer can bepar-
allelized across all edges, and the computation of output features can beparallelized across

4

||: vector concatenation



Graph Attention Networks (GATs)

• Aggregate the information from the neighbors with attention

• Note that each node can attend to the node itself

Published as a conference paper at ICLR 2018

↵ i j

~a

so
ft

m
ax

j

W ~hi W ~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵

16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1

5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W ~hi , W ~hj ) employed by our model, parametrized

by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ~h0
1.

applying anonlinearity, σ):

~h0
i = σ

0

@
X

j 2 N i

↵ i j W ~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k= 1

σ

0

@
X

j 2 N i

↵k
i j W k~hj

1

A (5)

where k represents concatenation, ↵k
i j are normalized attention coefficients computed by the k-th

attention mechanism (ak ), and W k is thecorresponding input linear transformation’sweight matrix.
Note that, in this setting, the final returned output, h0, will consist of K F 0 features (rather than F 0)
for each node.

Specially, if weperform multi-head attention on thefinal (prediction) layer of thenetwork, concate-
nation isno longer sensible—instead, we employ averaging, and delay applying thefinal nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h0
i = σ

0

@
1

K

KX

k= 1

X

j 2 N i

↵k
i j W k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it ishighly efficient: theoperation of theself-attentional layer can bepar-
allelized across all edges, and the computation of output features can beparallelized across

4

Published as a conference paper at ICLR 2018

↵ i j

~a

so
ft

m
ax

j

W ~hi W ~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1

5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W ~hi , W ~hj ) employed by our model, parametrized

by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ~h0
1.

applying anonlinearity, σ):

~h0
i = σ

0

@
X

j 2 N i

↵ i j W ~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k= 1

σ

0

@
X

j 2 N i

↵k
i j W k~hj

1

A (5)

where k represents concatenation, ↵k
i j are normalized attention coefficients computed by the k-th

attention mechanism (ak ), and W k is thecorresponding input linear transformation’sweight matrix.
Note that, in this setting, the final returned output, h0, will consist of K F 0 features (rather than F 0)
for each node.

Specially, if weperform multi-head attention on thefinal (prediction) layer of thenetwork, concate-
nation isno longer sensible—instead, weemploy averaging, and delay applying thefinal nonlinear-
ity (usually asoftmax or logistic sigmoid for classification problems) until then:

~h0
i = σ

0

@
1

K

KX

k= 1

X

j 2 N i

↵k
i j W k~hj

1

A (6)

The aggregation process of amulti-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it ishighly efficient: theoperation of theself-attentional layer can bepar-
allelized across all edges, and thecomputation of output features can beparallelized across

4



Multi-head Attention

• Following the multi-head attention in the Transformer model, multi-
head can be used

• The new node representation can be the concatenation or average of
the outputs of different attention heads

Published as a conference paper at ICLR 2018

↵ i j

~a

so
ft

m
ax

j

W ~hi W ~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵

16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1

5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W ~hi , W ~hj ) employed by our model, parametrized

by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ~h0
1.

applying anonlinearity, σ):

~h0
i = σ

0

@
X

j 2 N i

↵ i j W ~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k= 1

σ

0

@
X

j 2 N i

↵k
i j W k~hj

1

A (5)

where k represents concatenation, ↵k
i j are normalized attention coefficients computed by the k-th

attention mechanism (ak ), and W k is thecorresponding input linear transformation’sweight matrix.
Note that, in this setting, the final returned output, h0, will consist of K F 0 features (rather than F 0)
for each node.

Specially, if weperform multi-head attention on thefinal (prediction) layer of thenetwork, concate-
nation isno longer sensible—instead, we employ averaging, and delay applying thefinal nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h0
i = σ

0

@
1

K

KX

k= 1

X

j 2 N i

↵k
i j W k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it ishighly efficient: theoperation of theself-attentional layer can bepar-
allelized across all edges, and the computation of output features can beparallelized across

4

Published as aconference paper at ICLR 2018

↵ i j

~a

so
ft

m
ax

j

W ~hi W ~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵

16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1

5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W ~hi , W ~hj ) employed by our model, parametrized

by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ~h0
1.

applying anonlinearity, σ):

~h0
i = σ

0

@
X

j 2 N i

↵ i j W ~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k= 1

σ

0

@
X

j 2 N i

↵k
i j W k~hj

1

A (5)

where k represents concatenation, ↵k
i j are normalized attention coefficients computed by the k-th

attention mechanism (ak ), and W k is thecorresponding input linear transformation’sweight matrix.
Note that, in this setting, the final returned output, h0, will consist of K F 0 features (rather than F 0)
for each node.

Specially, if weperform multi-head attention on thefinal (prediction) layer of thenetwork, concate-
nation isno longer sensible—instead, weemploy averaging, and delay applying thefinal nonlinear-
ity (usually asoftmax or logistic sigmoid for classification problems) until then:

~h0
i = σ

0

@
1

K

KX

k= 1

X

j 2 N i

↵k
i j W k~hj

1

A (6)

Theaggregation process of amulti-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it ishighly efficient: theoperation of theself-attentional layer can bepar-
allelized acrossall edges, and thecomputation of output features can beparallelized across

4

Published as aconference paper at ICLR 2018

↵ i j

~a

so
ft

m
ax

j

W ~hi W ~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵

16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1

5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W ~hi , W ~hj ) employed by our model, parametrized

by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ~h0
1.

applying anonlinearity, σ):

~h0
i = σ

0

@
X

j 2 N i

↵ i j W ~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to bebeneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k= 1

σ

0

@
X

j 2 N i

↵k
i j W k~hj

1

A (5)

where k represents concatenation, ↵k
i j are normalized attention coefficients computed by the k-th

attention mechanism (ak ), and W k is thecorresponding input linear transformation’sweight matrix.
Note that, in this setting, the final returned output, h0, will consist of K F 0 features (rather than F 0)
for each node.

Specially, if weperform multi-head attention on thefinal (prediction) layer of thenetwork, concate-
nation isno longer sensible—instead, weemploy averaging, and delay applying thefinal nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h0
i = σ

0

@
1

K

KX

k= 1

X

j 2 N i

↵k
i j W k~hj

1

A (6)

Theaggregation process of amulti-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it ishighly efficient: theoperation of theself-attentional layer can bepar-
allelized across all edges, and thecomputation of output features can beparallelized across

4



A Practical Issue

• Some nodes may have too many neighbors

• Randomly sample a fixed number of neighbors in each iteration of
SGD (Hamilton et al. 2017).

Image from (Wang et al. 2019)



Neural Message Passing Networks

Gilmer et al. 2017. Neural Message Passing for Quantum Chemistry.



Neural Message Passing Networks
(MPNNs, Gilmer et al. 2017)
• All existing graph neural networks can be formulated as the general

framework of neural message passing
• Iteratively pass neural messages (vectors) between nodes

• Different Functions
• Message Function

• Node Update Function



Message Passing Phase

v

w1 w2

w3 w4

: message function

: vertex update function

AGGREGATE:

COMBINE:



What if we want to learn the representations
of entire graphs?
• Learn the representations of molecular graphs

• For predicting the chemical properties of molecules

• Add a readout function, which is applied to the node representations
in the last layer:

• ො𝑦 is the representation of entire graph

• R can be some simple functions such summation or average

: readout functionR



Applications: Recommendation

• Predict the most relevant items given users
• User-item and item-item graphs

Qu et al. An End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation.



Applications: Natural Language Understanding

• Semantic Role Labeling
• Encoding Sentences with Graph Convolutional Networks



Applications: Drug Discovery

• Drug repurposing
• Protein-drug-disease graph

• Molecule properties prediction

Molecule properties prediction

Figure from Zeng et al. 2019

Drug-Disease24 million research articles

Knowledge of drugs

Gene-Disease

Drug-Gene Gene-Gene

treatment/therapy (including 
investigational)
inhibits cell growth

alleviates, reduces
role in disease pathogenesis
(disease progression) biomarkers

…

causal mutations 
mutations affecting disease course 
drug targets

biomarkers (diagnostic) 
overexpression in disease 
improper regulation linked to disease

binding, ligand (esp. receptors)
increases expression
decreases expression

metabolism, pharmacokinetics inhibits
antagonism, blocking
agonism, activation

binding, ligand (esp. receptors) 
enhances response 
activates, stimulates

same protein or complex 
regulation 
production by cell population

39 types of relations and
over 15 million edges

…
……

RotatE on knowledge graph

…

representation learning

head

relation

tail

Element-wise product

COVID-19

Drugs (37,112)

Drug properties (11,289)

Genes (89,159)

HCoV-related genes (120)head relation tail

score | h r t | 2

2

activates
increases

expression 

blo
ck

in
g

inhibits
growth

ATC

in
hi

bi
ts

alleviates, reduces

biomarkers

(diagnostic)

binding, ligand inhibits

drug-drug interaction

treatm
ent/

therapy

targets

ro
le in

path
ogenesis

causal

m
utations

…

top candidates for HCoV-related genes

blocking

in
hi

bi
ti

ng binding

ac
ti

va
ti

ng

in
hi

bi
ti

ng

inhibiting

Drug-induced transcriptome

HCoV-induced transcriptome/proteome

HCoV-induced
gene profile

Drug-induced

gene profile

Enrichment analysis

0
0.7
0.7
0.1
0.8
0.1
0.7
0.7
0.6
0.8
0.9
0.6
0.3
0

0.1

0.7
0.7
0.5
0.1
0.9
0

0.2
0.9
0.9
0.3
0.4
0.4
0.8
0.6
0.1

0.4
1

0.8
0.3
0.4
0.6
0.5
0.2
0.9
0.7
0.7
0.3
0.9
0.7
1

0.8
0.1
0.2
0.4
0.3
0.5
0.2
1

0.8
0.6
0.3
0.9
0.2
0.5
0.4

0.7
0.6
0.2
0.3
0.9
0.3
1

0.6
0.3
0.4
0.7
0.8
0.3
0.1
1

0.8
0.1
0.5
0.1
0.3
0.5
0.1
0.3
0.5
0.3
0.8
0.4
0.1
0.3
0.3

0.2
0.8
0.3
0

0.2
0.7
0.6
0.3
0.7
0.8
0.9
0.6
0.1
0.6
0.6

0.4
0

0.2
0.8
0

0.4
0.7
0.5
0.9
0.7
0.2
1

0.7
0.7
0.5

0.7
0.2
0.4
0.5
0.5
0

0.9
0.9
0.2
0.4
0.2
0

0.3
0.8
0.3

0.6
0.7
0.2
0.3
0.8
0.3
0.2
0.6
0.9
0.8
0.9
0.1
0.4
0.3
0.7

0.1
0.7
0.6
0.7
0.3
0.6
0.3
0.5
0.4
0.6
0.7
0.5
0.9
0.7
0.4 0.2

0.1
0.3
0.8
0.8
0.3
0.4
0.6
0.3
0.9
0.1
0.3
0.8
0.4
0.3

0.2
0.8
0.8
0.5
0.4
0.3
0.5
0.8
0.8
0.5
0

0.5
0.5
0.4
0.1

0.3
0.3
0.3
0.5
0.8
0.9
0.3
0.6
0.2
0.2
0

0.6
0.1
0.8
0.5

0
0.6
0.1
0.6
0.2
0.9
0.9
0.9
0

0.6
0.1
0.5
0.7
0.1
0.7

Figure 1



Applications: Combinatorial Optimization

• Travelling Salesman Problem

Joshi et al. An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem.



Applications: Transportation

• Traffic flow prediction
• Road graph

Yu et al. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI’18. 



Applications: Social Influence Prediction

• Social influence prediction
• Predict the status of a user given the action statuses of her neighbors in social

network

Qiu et al. DeepInf: Social Influence Prediction with Deep Learning.



Implementations of GNNs

• PyTorch Geometric:
https://pytorchgeometric.readthedocs.io/en/latest/

• Deep Graph Library: https://www.dgl.ai/

https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai/


Example: GCN (Kipf et al.) in Pytorch Geometric

• https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py


Thanks!

36


	Slide 1: Graph Neural Networks
	Slide 2: Social Networks
	Slide 3
	Slide 4: Protein-Protein Interaction Graph
	Slide 5: Drug-Protein Interaction Graph
	Slide 6: Molecules
	Slide 7: Various Applications on Graphs
	Slide 8: Challenges of Graph Representation Learning
	Slide 9: Problem Definition
	Slide 10: Recap: Convolutional Neural Networks for Learning Image Representations
	Slide 11: Local Receptive Field on Graphs
	Slide 12: The Framework of Graph Neural Networks 
	Slide 13: Supervised Training
	Slide 14: How to Update the Node Representations?
	Slide 15: Graph Convolutional Networks 
	Slide 16: Graph Convolutional Networks  (GCNs, Kipf et al. 2013)
	Slide 17: The Computation Graph
	Slide 18: Can we change the weights of the edges?
	Slide 19: Graph Attention Networks 
	Slide 20: Graph Attention Networks (GATs)
	Slide 21: Graph Attention Networks (GATs)
	Slide 22: Multi-head Attention
	Slide 23: A Practical Issue
	Slide 24: Neural Message Passing Networks
	Slide 25: Neural Message Passing Networks (MPNNs, Gilmer et al. 2017)
	Slide 26: Message Passing Phase
	Slide 27: What if we want to learn the representations of entire graphs?
	Slide 28: Applications: Recommendation
	Slide 29: Applications: Natural Language Understanding
	Slide 30: Applications: Drug Discovery 
	Slide 31: Applications: Combinatorial Optimization
	Slide 32: Applications: Transportation
	Slide 33: Applications: Social Influence Prediction
	Slide 34: Implementations of GNNs
	Slide 35: Example: GCN (Kipf et al.) in Pytorch Geometric
	Slide 36: Thanks!

