
Graph Neural Networks
Jian Tang

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

1

mailto:jian.tang@hec.ca

Réseaux sociaux

Facebook Twitter

�3

�4
Image tirée de la présentation d’Albert-László Barabási à SIGIR09

Graphe des interactions entre protéines

https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-
networks

�5

Graphe des interactions entre
protéines et médicaments

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002503 �6

Molécules

�7

Quelques applications des graphes
• Recommandations d’amis sur les réseaux sociaux
• Prédiction de l’allégeance politique d’un utilisateur sur Facebook
• Prédiction de la diffusion d’informations sur les réseaux sociaux
• Prédiction du rôle des protéines dans un graphe des interactions

entre protéines
• Prédiction des propriétés chimiques d’une molécule
• Etc.
• Ces applications nécessitent une bonne représentation du

graphe!!

�8

Apprentissage de graphes (semi) supervisé
• Au lieu de préserver la structure du graphe, des tâches supervisées

sont données:
• Classification des nœuds,
• Présence d’une arête.

• Apprendre les représentations des nœuds pour une tâche spécifique

?
?

?
?

?
?

Type du noeud

Attribut du noeud

Rappel: Réseaux convolutifs (CNN) pour
apprentissage de représentation
• Filtres convolutifs

• Permet la reconnaissance d’attributs locaux.
• Différents attributs peuvent être appris en fonction de leur emplacement

sur l’image.

 Champ récepteur local/
Local Receptive Field pour les graphes
• Comment peut-on définir des local receptive fields pour des

graphes?
• Sous-graphes locaux

• Par contre, il n’y pas d’ordre entre les voisins:
• Avec une image, les voisins peuvent être ordonnés.

Imag Graph

Local Receptive Field on Graphs

• How should we define local receptive fields on graphs?
• local subgraphs

• However, there are no orders between the neighbors
• In images, the neighbors of a node can follow specific order

Learning Convolutional Neural Networks for Graphs

a sequence of words. However, for numerous graph col-
lections a problem-specific ordering (spatial, temporal, or
otherwise) is missing and the nodes of the graphs are not
in correspondence. In these instances, one has to solve two
problems: (i) Determining the node sequences for which
neighborhood graphs are created and (ii) computing a nor-
malization of neighborhood graphs, that is, a unique map-
ping from a graph representation into a vector space rep-
resentation. The proposed approach, termed PATCHY-SAN,
addresses these two problems for arbitrary graphs. For each
input graph, it first determines nodes (and their order) for
which neighborhood graphs are created. For each of these
nodes, a neighborhood consisting of exactly k nodes is ex-
tracted and normalized, that is, it is uniquely mapped to a
space with a fixed linear order. The normalized neighbor-
hood serves as the receptive field for a node under consider-
ation. Finally, feature learning components such as convo-
lutional and dense layers are combined with the normalized
neighborhood graphs as the CNN’s receptive fields.

Figure 2 illustrates the PATCHY-SAN architecture which
has several advantages over existing approaches: First, it
is highly efficient, naively parallelizable, and applicable to
large graphs. Second, for a number of applications, rang-
ing from computational biology to social network analysis,
it is important to visualize learned network motifs (Milo
et al., 2002). PATCHY-SAN supports feature visualiza-
tions providing insights into the structural properties of
graphs. Third, instead of crafting yet another graph kernel,
PATCHY-SAN learns application dependent features with-
out the need to feature engineering. Our theoretical contri-
butions are the definition of the normalization problem on
graphs and its complexity; a method for comparing graph
labeling approaches for a collection of graphs; and a result
that shows that PATCHY-SAN generalizes CNNs on images.
Using standard benchmark data sets, we demonstrate that
the learned CNNs for graphs are both efficient and effec-
tive compared to state of the art graph kernels.

2. Related Work
Graph kernels allow kernel-based learning approaches such
as SVMs to work directly on graphs (Vishwanathan et al.,
2010). Kernels on graphs were originally defined as sim-
ilarity functions on the nodes of a single graph (Kondor
& Lafferty, 2002). Two representative classes of kernels
are the skew spectrum kernel (Kondor & Borgwardt, 2008)
and kernels based on graphlets (Kondor et al., 2009; Sher-
vashidze et al., 2009). The latter is related to our work,
as it builds kernels based on fixed-sized subgraphs. These
subgraphs, which are often called motifs or graphlets, re-
flect functional network properties (Milo et al., 2002; Alon,
2007). However, due to the combinatorial complexity of
subgraph enumeration, graphlet kernels are restricted to

Figure 2. An illustration of the proposed architecture. A node
sequence is selected from a graph via a graph labeling procedure.
For some nodes in the sequence, a local neighborhood graph is as-
sembled and normalized. The normalized neighborhoods are used
as receptive fields and combined with existing CNN components.

subgraphs with few nodes. An effective class of graph
kernels are the Weisfeiler-Lehman (WL) kernels (Sher-
vashidze et al., 2011). WL kernels, however, only sup-
port discrete features and use memory linear in the num-
ber of training examples at test time. PATCHY-SAN uses
WL as one possible labeling procedure to compute re-
ceptive fields. Deep graph kernels (Yanardag & Vish-
wanathan, 2015) and graph invariant kernels (Orsini et al.,
2015) compare graphs based on the existence or count of
small substructures such as shortest paths (Borgwardt &
Kriegel, 2005), graphlets, subtrees, and other graph in-
variants (Haussler, 1999; Orsini et al., 2015). In con-
trast, PATCHY-SAN learns substructures from graph data
and is not limited to a predefined set of motifs. More-
over, while all graph kernels have a training complexity
at least quadratic in the number of graphs (Shervashidze
et al., 2011), which is prohibitive for large-scale problems,
PATCHY-SAN scales linearly with the number of graphs.

Graph neural networks (GNNs) (Scarselli et al., 2009) are
a recurrent neural network architecture defined on graphs.
GNNs apply recurrent neural networks for walks on the
graph structure, propagating node representations until a
fixed point is reached. The resulting node representations
are then used as features in classification and regression
problems. GNNs support only discrete labels and perform
as many backpropagation operations as there are edges and
nodes in the graph per learning iteration. Gated Graph Se-
quence Neural Networks modify GNNs to use gated recur-
rent units and to output sequences (Li et al., 2015).

Recent work extended CNNs to topologies that differ from
the low-dimensional grid structure (Bruna et al., 2014;
Henaff et al., 2015). All of these methods, however, assume
one global graph structure, that is, a correspondence of the
vertices across input examples. (Duvenaud et al., 2015)
perform convolutional type operations on graphs, develop-
ing a differentiable variant of one specific graph feature.

Image Graph

Formalisme
• Soit le graphe � où V est l’ensemble des noeuds et E

est l’ensemble des arêtes.
• Deux types d’informations sont présentées:

• Un vecteur d’attribut � pour chaque noeud � . L’ensemble des
attributs pour V peut être représenté dans une matrice des attributs X de
dimension � .
• La structure du graphe, généralement définie sous la forme d’une matrice

adjacente A où � est le poids associé à l’arête (i, j).

• But: obtenir une représentation des noeuds, définie par H (de
dimension � , où F est la dimension de chaque
représentation).

! = (", #),

"$ ∈ %& '$

(× &

)$*

(× +

Réseaux de neurones de graphe
(formalisme)
• Réseaux de neurones de graphes (à plusieurs couches):

• � = X, la matrice des attributs des noeuds
• De façon itérative, mettre à jour la représentation des noeuds

• La � couche cachée du réseau de neurones est la �
représentation des noeuds, laquelle est symbolisée par � .

• Soit � la dernière représentation:
• Peut être utilisée pour tâches 

spécifiques (classification de noeuds)

,0

kième kième
Hk

,-

,0 ,1 ,2 ,-…

Entrée

Couche cachée
(première)

Couche cachée
(Deuxième)

Dernière
représentation

Apprentissage supervisé
• Apprentissage d’un classificateur, f, à l’aide de la représentation

finale � .
• Fonction de perte est de la forme:

,-

. = ∑
$∈-/01213

2455(6(,-
$), 7$)

,0 ,1 ,2 ,-…

Entrée

Couche cachée
(première)

Couche cachée
(Deuxième)

Dernière
représentation

exemples libellés

Comment mettre à jour la représentation
des noeuds?
• Pour chaque couche d’un GNN et pour chaque noeud:
• AGREGER l’information associée aux voisins d’un noeud,
• COMBINER cette information à celle du noeud d’intérêt.

a8
v = %&&'(&%)(*({h8−1

u :9 ∈ ((')}) h8
v = ,-./01(*(h8−1

v , /8
')

How to Update the Node Representations?

• In each layer of graph neural networks, for each node
• AGGREGATE the information from the neighbors
• COMBINE information from neighbors with its own information

AGGREGATE

Learning Convolutional Neural Networks for Graphs

a sequence of words. However, for numerous graph col-
lections a problem-specific ordering (spatial, temporal, or
otherwise) is missing and the nodes of the graphs are not
in correspondence. In these instances, one has to solve two
problems: (i) Determining the node sequences for which
neighborhood graphs are created and (ii) computing a nor-
malization of neighborhood graphs, that is, a unique map-
ping from a graph representation into a vector space rep-
resentation. The proposed approach, termed PATCHY-SAN,
addresses these two problems for arbitrary graphs. For each
input graph, it first determines nodes (and their order) for
which neighborhood graphs are created. For each of these
nodes, a neighborhood consisting of exactly k nodes is ex-
tracted and normalized, that is, it is uniquely mapped to a
space with a fixed linear order. The normalized neighbor-
hood serves as the receptive field for a node under consider-
ation. Finally, feature learning components such as convo-
lutional and dense layers are combined with the normalized
neighborhood graphs as the CNN’s receptive fields.

Figure 2 illustrates the PATCHY-SAN architecture which
has several advantages over existing approaches: First, it
is highly efficient, naively parallelizable, and applicable to
large graphs. Second, for a number of applications, rang-
ing from computational biology to social network analysis,
it is important to visualize learned network motifs (Milo
et al., 2002). PATCHY-SAN supports feature visualiza-
tions providing insights into the structural properties of
graphs. Third, instead of crafting yet another graph kernel,
PATCHY-SAN learns application dependent features with-
out the need to feature engineering. Our theoretical contri-
butions are the definition of the normalization problem on
graphs and its complexity; a method for comparing graph
labeling approaches for a collection of graphs; and a result
that shows that PATCHY-SAN generalizes CNNs on images.
Using standard benchmark data sets, we demonstrate that
the learned CNNs for graphs are both efficient and effec-
tive compared to state of the art graph kernels.

2. Related Work
Graph kernels allow kernel-based learning approaches such
as SVMs to work directly on graphs (Vishwanathan et al.,
2010). Kernels on graphs were originally defined as sim-
ilarity functions on the nodes of a single graph (Kondor
& Lafferty, 2002). Two representative classes of kernels
are the skew spectrum kernel (Kondor & Borgwardt, 2008)
and kernels based on graphlets (Kondor et al., 2009; Sher-
vashidze et al., 2009). The latter is related to our work,
as it builds kernels based on fixed-sized subgraphs. These
subgraphs, which are often called motifs or graphlets, re-
flect functional network properties (Milo et al., 2002; Alon,
2007). However, due to the combinatorial complexity of
subgraph enumeration, graphlet kernels are restricted to

Figure 2. An illustration of the proposed architecture. A node
sequence is selected from a graph via a graph labeling procedure.
For some nodes in the sequence, a local neighborhood graph is as-
sembled and normalized. The normalized neighborhoods are used
as receptive fields and combined with existing CNN components.

subgraphs with few nodes. An effective class of graph
kernels are the Weisfeiler-Lehman (WL) kernels (Sher-
vashidze et al., 2011). WL kernels, however, only sup-
port discrete features and use memory linear in the num-
ber of training examples at test time. PATCHY-SAN uses
WL as one possible labeling procedure to compute re-
ceptive fields. Deep graph kernels (Yanardag & Vish-
wanathan, 2015) and graph invariant kernels (Orsini et al.,
2015) compare graphs based on the existence or count of
small substructures such as shortest paths (Borgwardt &
Kriegel, 2005), graphlets, subtrees, and other graph in-
variants (Haussler, 1999; Orsini et al., 2015). In con-
trast, PATCHY-SAN learns substructures from graph data
and is not limited to a predefined set of motifs. More-
over, while all graph kernels have a training complexity
at least quadratic in the number of graphs (Shervashidze
et al., 2011), which is prohibitive for large-scale problems,
PATCHY-SAN scales linearly with the number of graphs.

Graph neural networks (GNNs) (Scarselli et al., 2009) are
a recurrent neural network architecture defined on graphs.
GNNs apply recurrent neural networks for walks on the
graph structure, propagating node representations until a
fixed point is reached. The resulting node representations
are then used as features in classification and regression
problems. GNNs support only discrete labels and perform
as many backpropagation operations as there are edges and
nodes in the graph per learning iteration. Gated Graph Se-
quence Neural Networks modify GNNs to use gated recur-
rent units and to output sequences (Li et al., 2015).

Recent work extended CNNs to topologies that differ from
the low-dimensional grid structure (Bruna et al., 2014;
Henaff et al., 2015). All of these methods, however, assume
one global graph structure, that is, a correspondence of the
vertices across input examples. (Duvenaud et al., 2015)
perform convolutional type operations on graphs, develop-
ing a differentiable variant of one specific graph feature.

a%& = ())*+)(,+'({h(&)": 1 ∈ 3(4)}) h%& = 789:;<+'(h%&)", >*&)

Learning Convolutional Neural Networks for Graphs

a sequence of words. However, for numerous graph col-
lections a problem-specific ordering (spatial, temporal, or
otherwise) is missing and the nodes of the graphs are not
in correspondence. In these instances, one has to solve two
problems: (i) Determining the node sequences for which
neighborhood graphs are created and (ii) computing a nor-
malization of neighborhood graphs, that is, a unique map-
ping from a graph representation into a vector space rep-
resentation. The proposed approach, termed PATCHY-SAN,
addresses these two problems for arbitrary graphs. For each
input graph, it first determines nodes (and their order) for
which neighborhood graphs are created. For each of these
nodes, a neighborhood consisting of exactly k nodes is ex-
tracted and normalized, that is, it is uniquely mapped to a
space with a fixed linear order. The normalized neighbor-
hood serves as the receptive field for a node under consider-
ation. Finally, feature learning components such as convo-
lutional and dense layers are combined with the normalized
neighborhood graphs as the CNN’s receptive fields.

Figure 2 illustrates the PATCHY-SAN architecture which
has several advantages over existing approaches: First, it
is highly efficient, naively parallelizable, and applicable to
large graphs. Second, for a number of applications, rang-
ing from computational biology to social network analysis,
it is important to visualize learned network motifs (Milo
et al., 2002). PATCHY-SAN supports feature visualiza-
tions providing insights into the structural properties of
graphs. Third, instead of crafting yet another graph kernel,
PATCHY-SAN learns application dependent features with-
out the need to feature engineering. Our theoretical contri-
butions are the definition of the normalization problem on
graphs and its complexity; a method for comparing graph
labeling approaches for a collection of graphs; and a result
that shows that PATCHY-SAN generalizes CNNs on images.
Using standard benchmark data sets, we demonstrate that
the learned CNNs for graphs are both efficient and effec-
tive compared to state of the art graph kernels.

2. Related Work
Graph kernels allow kernel-based learning approaches such
as SVMs to work directly on graphs (Vishwanathan et al.,
2010). Kernels on graphs were originally defined as sim-
ilarity functions on the nodes of a single graph (Kondor
& Lafferty, 2002). Two representative classes of kernels
are the skew spectrum kernel (Kondor & Borgwardt, 2008)
and kernels based on graphlets (Kondor et al., 2009; Sher-
vashidze et al., 2009). The latter is related to our work,
as it builds kernels based on fixed-sized subgraphs. These
subgraphs, which are often called motifs or graphlets, re-
flect functional network properties (Milo et al., 2002; Alon,
2007). However, due to the combinatorial complexity of
subgraph enumeration, graphlet kernels are restricted to

Figure 2. An illustration of the proposed architecture. A node
sequence is selected from a graph via a graph labeling procedure.
For some nodes in the sequence, a local neighborhood graph is as-
sembled and normalized. The normalized neighborhoods are used
as receptive fields and combined with existing CNN components.

subgraphs with few nodes. An effective class of graph
kernels are the Weisfeiler-Lehman (WL) kernels (Sher-
vashidze et al., 2011). WL kernels, however, only sup-
port discrete features and use memory linear in the num-
ber of training examples at test time. PATCHY-SAN uses
WL as one possible labeling procedure to compute re-
ceptive fields. Deep graph kernels (Yanardag & Vish-
wanathan, 2015) and graph invariant kernels (Orsini et al.,
2015) compare graphs based on the existence or count of
small substructures such as shortest paths (Borgwardt &
Kriegel, 2005), graphlets, subtrees, and other graph in-
variants (Haussler, 1999; Orsini et al., 2015). In con-
trast, PATCHY-SAN learns substructures from graph data
and is not limited to a predefined set of motifs. More-
over, while all graph kernels have a training complexity
at least quadratic in the number of graphs (Shervashidze
et al., 2011), which is prohibitive for large-scale problems,
PATCHY-SAN scales linearly with the number of graphs.

Graph neural networks (GNNs) (Scarselli et al., 2009) are
a recurrent neural network architecture defined on graphs.
GNNs apply recurrent neural networks for walks on the
graph structure, propagating node representations until a
fixed point is reached. The resulting node representations
are then used as features in classification and regression
problems. GNNs support only discrete labels and perform
as many backpropagation operations as there are edges and
nodes in the graph per learning iteration. Gated Graph Se-
quence Neural Networks modify GNNs to use gated recur-
rent units and to output sequences (Li et al., 2015).

Recent work extended CNNs to topologies that differ from
the low-dimensional grid structure (Bruna et al., 2014;
Henaff et al., 2015). All of these methods, however, assume
one global graph structure, that is, a correspondence of the
vertices across input examples. (Duvenaud et al., 2015)
perform convolutional type operations on graphs, develop-
ing a differentiable variant of one specific graph feature.

COMBINE

Learning Convolutional Neural Networks for Graphs

a sequence of words. However, for numerous graph col-
lections a problem-specific ordering (spatial, temporal, or
otherwise) is missing and the nodes of the graphs are not
in correspondence. In these instances, one has to solve two
problems: (i) Determining the node sequences for which
neighborhood graphs are created and (ii) computing a nor-
malization of neighborhood graphs, that is, a unique map-
ping from a graph representation into a vector space rep-
resentation. The proposed approach, termed PATCHY-SAN,
addresses these two problems for arbitrary graphs. For each
input graph, it first determines nodes (and their order) for
which neighborhood graphs are created. For each of these
nodes, a neighborhood consisting of exactly k nodes is ex-
tracted and normalized, that is, it is uniquely mapped to a
space with a fixed linear order. The normalized neighbor-
hood serves as the receptive field for a node under consider-
ation. Finally, feature learning components such as convo-
lutional and dense layers are combined with the normalized
neighborhood graphs as the CNN’s receptive fields.

Figure 2 illustrates the PATCHY-SAN architecture which
has several advantages over existing approaches: First, it
is highly efficient, naively parallelizable, and applicable to
large graphs. Second, for a number of applications, rang-
ing from computational biology to social network analysis,
it is important to visualize learned network motifs (Milo
et al., 2002). PATCHY-SAN supports feature visualiza-
tions providing insights into the structural properties of
graphs. Third, instead of crafting yet another graph kernel,
PATCHY-SAN learns application dependent features with-
out the need to feature engineering. Our theoretical contri-
butions are the definition of the normalization problem on
graphs and its complexity; a method for comparing graph
labeling approaches for a collection of graphs; and a result
that shows that PATCHY-SAN generalizes CNNs on images.
Using standard benchmark data sets, we demonstrate that
the learned CNNs for graphs are both efficient and effec-
tive compared to state of the art graph kernels.

2. Related Work
Graph kernels allow kernel-based learning approaches such
as SVMs to work directly on graphs (Vishwanathan et al.,
2010). Kernels on graphs were originally defined as sim-
ilarity functions on the nodes of a single graph (Kondor
& Lafferty, 2002). Two representative classes of kernels
are the skew spectrum kernel (Kondor & Borgwardt, 2008)
and kernels based on graphlets (Kondor et al., 2009; Sher-
vashidze et al., 2009). The latter is related to our work,
as it builds kernels based on fixed-sized subgraphs. These
subgraphs, which are often called motifs or graphlets, re-
flect functional network properties (Milo et al., 2002; Alon,
2007). However, due to the combinatorial complexity of
subgraph enumeration, graphlet kernels are restricted to

Figure 2. An illustration of the proposed architecture. A node
sequence is selected from a graph via a graph labeling procedure.
For some nodes in the sequence, a local neighborhood graph is as-
sembled and normalized. The normalized neighborhoods are used
as receptive fields and combined with existing CNN components.

subgraphs with few nodes. An effective class of graph
kernels are the Weisfeiler-Lehman (WL) kernels (Sher-
vashidze et al., 2011). WL kernels, however, only sup-
port discrete features and use memory linear in the num-
ber of training examples at test time. PATCHY-SAN uses
WL as one possible labeling procedure to compute re-
ceptive fields. Deep graph kernels (Yanardag & Vish-
wanathan, 2015) and graph invariant kernels (Orsini et al.,
2015) compare graphs based on the existence or count of
small substructures such as shortest paths (Borgwardt &
Kriegel, 2005), graphlets, subtrees, and other graph in-
variants (Haussler, 1999; Orsini et al., 2015). In con-
trast, PATCHY-SAN learns substructures from graph data
and is not limited to a predefined set of motifs. More-
over, while all graph kernels have a training complexity
at least quadratic in the number of graphs (Shervashidze
et al., 2011), which is prohibitive for large-scale problems,
PATCHY-SAN scales linearly with the number of graphs.

Graph neural networks (GNNs) (Scarselli et al., 2009) are
a recurrent neural network architecture defined on graphs.
GNNs apply recurrent neural networks for walks on the
graph structure, propagating node representations until a
fixed point is reached. The resulting node representations
are then used as features in classification and regression
problems. GNNs support only discrete labels and perform
as many backpropagation operations as there are edges and
nodes in the graph per learning iteration. Gated Graph Se-
quence Neural Networks modify GNNs to use gated recur-
rent units and to output sequences (Li et al., 2015).

Recent work extended CNNs to topologies that differ from
the low-dimensional grid structure (Bruna et al., 2014;
Henaff et al., 2015). All of these methods, however, assume
one global graph structure, that is, a correspondence of the
vertices across input examples. (Duvenaud et al., 2015)
perform convolutional type operations on graphs, develop-
ing a differentiable variant of one specific graph feature.

AGREGER COMBINER

Réseaux convolutifs de graphes**

**Kipf et al. 2017. Semi-supervised Classification with Graph Convolutional Networks.

Réseaux convolutifs de graphes

• Soit A, la matrice adjacente
• On pose:

� : degré du noeud i (pour �)

� : matrice des poids associée à
 la couche k

3$ Â

Wk

Graph Convolutional Networks
(GCNs, Kipf et al. 2013)
• A: the adjacency matrix
• Add self link: !" = " + %

h.# = 3(,
/∈{1 ' ∪'}

56'/
7'7/

W4h5#6%)

h.# = 3(,
/∈1 '

6'/
7'7/

W4h5#6% +
1
7'
W4h'#6%)

?+: degree of node i (in matrix @A)
W,: transformation matrix in layer k

Graph Convolutional Networks
(GCNs, Kipf et al. 2013)
• A: the adjacency matrix
• Add self link: !" = " + %

h.# = 3(,
/∈{1 ' ∪'}

56'/
7'7/

W4h5#6%)

h.# = 3(,
/∈1 '

6'/
7'7/

W4h5#6% +
1
7'
W4h'#6%)

?+: degree of node i (in matrix @A)
W,: transformation matrix in layer k

Graphe de computation
• Deux couches de GCN

Images tirées de Ying et al. 2018

The Computation Graph

• Two layers of GCNs

h(1)
A

h(1)
N (A)

h(2)
A

h(1)
B

h(1)
C

h(1)
D

INPUT GRAPH

TARGET NODE B

D
E

F

BATCH OF NETWORKS

�
C

A

B

C

D

A

A

A

C

F

B

E

A

(See Algorithm 1)
convolve(2) convolve(1)

Figure 1: Overview of our model architecture using depth-2 convolutions (best viewed in color). Left: A small example input
graph. Right: The 2-layer neural network that computes the embedding h(2)A of nodeA using the previous-layer representation,
h(1)A , of node A and that of its neighborhood N(A) (nodes B,C,D). (However, the notion of neighborhood is general and not all
neighbors need to be included (Section 3.2).) Bottom: The neural networks that compute embeddings of each node of the input
graph. While neural networks di�er from node to node they all share the same set of parameters (i.e., the parameters of the
��������(1) and ��������(2) functions; Algorithm 1). Boxes with the same shading patterns share parameters; � denotes an
importance pooling function; and thin rectangular boxes denote densely-connected multi-layer neural networks.

• On-the-�y convolutions: Traditional GCN algorithms per-
form graph convolutions by multiplying feature matrices by
powers of the full graph Laplacian. In contrast, our PinSage algo-
rithm performs e�cient, localized convolutions by sampling the
neighborhood around a node and dynamically constructing a
computation graph from this sampled neighborhood. These dy-
namically constructed computation graphs (Fig. 1) specify how
to perform a localized convolution around a particular node, and
alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a
producer-consumer architecture for constructing minibatches
that ensures maximal GPU utilization during model training. A
large-memory, CPU-bound producer e�ciently samples node
network neighborhoods and fetches the necessary features to
de�ne local convolutions, while a GPU-bound TensorFlowmodel
consumes these pre-de�ned computation graphs to e�ciently
run stochastic gradient decent.

• E�cient MapReduce inference: Given a fully-trained GCN
model, we design an e�cient MapReduce pipeline that can dis-
tribute the trained model to generate embeddings for billions of
nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we
also introduce new training techniques and algorithmic innova-
tions. These innovations improve the quality of the representations
learned by PinSage, leading signi�cant performance gains in down-
stream recommender system tasks:

• Constructing convolutions via random walks: Taking full
neighborhoods of nodes to perform convolutions (Fig. 1) would
result in huge computation graphs, so we resort to sampling.
However, random sampling is suboptimal, and we develop a new
technique using short random walks to sample the computa-
tion graph. An additional bene�t is that each node now has an
importance score, which we use in the pooling/aggregation step.

• Importance pooling: A core component of graph convolutions
is the aggregation of feature information from local neighbor-
hoods in the graph. We introduce a method to weigh the impor-
tance of node features in this aggregation based upon random-
walk similarity measures, leading to a 46% performance gain in
o�ine evaluation metrics.

• Curriculum training:We design a curriculum training scheme,
where the algorithm is fed harder-and-harder examples during
training, resulting in a 12% performance gain.
We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-
cation where users interact with pins, which are visual bookmarks
to online content (e.g., recipes they want to cook, or clothes they
want to purchase). Users organize these pins into boards, which con-
tain collections of similar pins. Altogether, Pinterest is the world’s
largest user-curated graph of images, with over 2 billion unique
pins collected into over 1 billion boards.

Through extensive o�ine metrics, controlled user studies, and
A/B tests, we show that our approach achieves state-of-the-art

Figure from Ying et al. 2018

Peut-on changer les poids des arêtes?
• Pour les GCN, l’influence d’un noeud j sur le noeud i est

déterminée en fonction du poids de leur arête (i,j) de même que
de leur degré respectif:

• Par contre,
• Les arêtes peuvent contenir beaucoup de bruit
• Peut ne pas être optimal pour certaines tâches

/$*

3$3*

 Graph Attention Networks
(Veličković et al. 2017)

 Graph Attention Networks (GAT)

• Un mécanisme d’attention est utilisé afin d’apprendre les poids
des arêtes
• Requête: noeud actuel
• Mémoire: voisins (incluant le noeud actuel).

• L’attention entre les noeuds i et j se calcule ainsi:

||: concaténation vectorielle

Graph Attention Networks (GATs)

• We can use ATTENTION mechanism to learn the weights between the
edges
• Query: current node
• Memory: neighbors (including node itself).

• The attention between node i and j:

Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Published as a conference paper at ICLR 2018

sharing a neural network computation across edges is reminiscent of the formulation of relational
networks (Santoro et al., 2017) and VAIN (Hoshen, 2017), wherein relations between objects or
agents are aggregated pair-wise, by employing a shared mechanism. Similarly, our proposed at-
tention model can be connected to the works by Duan et al. (2017) and Denil et al. (2017), which
use a neighborhood attention operation to compute attention coefficients between different objects
in an environment. Other related approaches include locally linear embedding (LLE) (Roweis &
Saul, 2000) and memory networks (Weston et al., 2014). LLE selects a fixed number of neighbors
around each data point, and learns a weight coefficient for each neighbor to reconstruct each point
as a weighted sum of its neighbors. A second optimization step extracts the point’s feature embed-
ding. Memory networks also share some connections with our work, in particular, if we interpret
the neighborhood of a node as the memory, which is used to compute the node features by attending
over its values, and then is updated by storing the new features in the same position.

2 GAT ARCHITECTURE

In this section, we will present the building block layer used to construct arbitrary graph attention
networks (through stacking this layer), and directly outline its theoretical and practical benefits and
limitations compared to prior work in the domain of neural graph processing.

2.1 GRAPH ATTENTIONAL LAYER

We will start by describing a single graph attentional layer, as the sole layer utilized throughout
all of the GAT architectures used in our experiments. The particular attentional setup utilized by us
closely follows the work of Bahdanau et al. (2015)—but the framework is agnostic to the particular
choice of attention mechanism.

The input to our layer is a set of node features, h = {~h1,
~h2, . . . ,

~hN},~hi 2 RF , where N is the
number of nodes, and F is the number of features in each node. The layer produces a new set of node
features (of potentially different cardinality F

0), h0 = {~h0
1,
~h
0
2, . . . ,

~h
0
N},~h0

i 2 RF 0
, as its output.

In order to obtain sufficient expressive power to transform the input features into higher-level fea-
tures, at least one learnable linear transformation is required. To that end, as an initial step, a shared
linear transformation, parametrized by a weight matrix, W 2 RF 0⇥F , is applied to every node. We
then perform self-attention on the nodes—a shared attentional mechanism a : RF 0 ⇥ RF 0 ! R
computes attention coefficients

eij = a(W~hi,W~hj) (1)

that indicate the importance of node j’s features to node i. In its most general formulation, the model
allows every node to attend on every other node, dropping all structural information. We inject the
graph structure into the mechanism by performing masked attention—we only compute eij for nodes
j 2 Ni, where Ni is some neighborhood of node i in the graph. In all our experiments, these will
be exactly the first-order neighbors of i (including i). To make coefficients easily comparable across
different nodes, we normalize them across all choices of j using the softmax function:

↵ij = softmaxj(eij) =
exp(eij)P

k2Ni
exp(eik)

. (2)

In our experiments, the attention mechanism a is a single-layer feedforward neural network,
parametrized by a weight vector ~a 2 R2F 0

, and applying the LeakyReLU nonlinearity (with negative
input slope ↵ = 0.2). Fully expanded out, the coefficients computed by the attention mechanism
(illustrated by Figure 1 (left)) may then be expressed as:

↵ij =
exp

⇣
LeakyReLU

⇣
~aT [W~hikW~hj]

⌘⌘

P
k2Ni

exp
⇣

LeakyReLU
⇣
~aT [W~hikW~hk]

⌘⌘ (3)

where ·T represents transposition and k is the concatenation operation.

Once obtained, the normalized attention coefficients are used to compute a linear combination of the
features corresponding to them, to serve as the final output features for every node (after potentially

3

Published as a conference paper at ICLR 2018

sharing a neural network computation across edges is reminiscent of the formulation of relational
networks (Santoro et al., 2017) and VAIN (Hoshen, 2017), wherein relations between objects or
agents are aggregated pair-wise, by employing a shared mechanism. Similarly, our proposed at-
tention model can be connected to the works by Duan et al. (2017) and Denil et al. (2017), which
use a neighborhood attention operation to compute attention coefficients between different objects
in an environment. Other related approaches include locally linear embedding (LLE) (Roweis &
Saul, 2000) and memory networks (Weston et al., 2014). LLE selects a fixed number of neighbors
around each data point, and learns a weight coefficient for each neighbor to reconstruct each point
as a weighted sum of its neighbors. A second optimization step extracts the point’s feature embed-
ding. Memory networks also share some connections with our work, in particular, if we interpret
the neighborhood of a node as the memory, which is used to compute the node features by attending
over its values, and then is updated by storing the new features in the same position.

2 GAT ARCHITECTURE

In this section, we will present the building block layer used to construct arbitrary graph attention
networks (through stacking this layer), and directly outline its theoretical and practical benefits and
limitations compared to prior work in the domain of neural graph processing.

2.1 GRAPH ATTENTIONAL LAYER

We will start by describing a single graph attentional layer, as the sole layer utilized throughout
all of the GAT architectures used in our experiments. The particular attentional setup utilized by us
closely follows the work of Bahdanau et al. (2015)—but the framework is agnostic to the particular
choice of attention mechanism.

The input to our layer is a set of node features, h = {~h1,
~h2, . . . ,

~hN},~hi 2 RF , where N is the
number of nodes, and F is the number of features in each node. The layer produces a new set of node
features (of potentially different cardinality F

0), h0 = {~h0
1,
~h
0
2, . . . ,

~h
0
N},~h0

i 2 RF 0
, as its output.

In order to obtain sufficient expressive power to transform the input features into higher-level fea-
tures, at least one learnable linear transformation is required. To that end, as an initial step, a shared
linear transformation, parametrized by a weight matrix, W 2 RF 0⇥F , is applied to every node. We
then perform self-attention on the nodes—a shared attentional mechanism a : RF 0 ⇥ RF 0 ! R
computes attention coefficients

eij = a(W~hi,W~hj) (1)

that indicate the importance of node j’s features to node i. In its most general formulation, the model
allows every node to attend on every other node, dropping all structural information. We inject the
graph structure into the mechanism by performing masked attention—we only compute eij for nodes
j 2 Ni, where Ni is some neighborhood of node i in the graph. In all our experiments, these will
be exactly the first-order neighbors of i (including i). To make coefficients easily comparable across
different nodes, we normalize them across all choices of j using the softmax function:

↵ij = softmaxj(eij) =
exp(eij)P

k2Ni
exp(eik)

. (2)

In our experiments, the attention mechanism a is a single-layer feedforward neural network,
parametrized by a weight vector ~a 2 R2F 0

, and applying the LeakyReLU nonlinearity (with negative
input slope ↵ = 0.2). Fully expanded out, the coefficients computed by the attention mechanism
(illustrated by Figure 1 (left)) may then be expressed as:

↵ij =
exp

⇣
LeakyReLU

⇣
~aT [W~hikW~hj]

⌘⌘

P
k2Ni

exp
⇣

LeakyReLU
⇣
~aT [W~hikW~hk]

⌘⌘ (3)

where ·T represents transposition and k is the concatenation operation.

Once obtained, the normalized attention coefficients are used to compute a linear combination of the
features corresponding to them, to serve as the final output features for every node (after potentially

3

Published as a conference paper at ICLR 2018

sharing a neural network computation across edges is reminiscent of the formulation of relational
networks (Santoro et al., 2017) and VAIN (Hoshen, 2017), wherein relations between objects or
agents are aggregated pair-wise, by employing a shared mechanism. Similarly, our proposed at-
tention model can be connected to the works by Duan et al. (2017) and Denil et al. (2017), which
use a neighborhood attention operation to compute attention coefficients between different objects
in an environment. Other related approaches include locally linear embedding (LLE) (Roweis &
Saul, 2000) and memory networks (Weston et al., 2014). LLE selects a fixed number of neighbors
around each data point, and learns a weight coefficient for each neighbor to reconstruct each point
as a weighted sum of its neighbors. A second optimization step extracts the point’s feature embed-
ding. Memory networks also share some connections with our work, in particular, if we interpret
the neighborhood of a node as the memory, which is used to compute the node features by attending
over its values, and then is updated by storing the new features in the same position.

2 GAT ARCHITECTURE

In this section, we will present the building block layer used to construct arbitrary graph attention
networks (through stacking this layer), and directly outline its theoretical and practical benefits and
limitations compared to prior work in the domain of neural graph processing.

2.1 GRAPH ATTENTIONAL LAYER

We will start by describing a single graph attentional layer, as the sole layer utilized throughout
all of the GAT architectures used in our experiments. The particular attentional setup utilized by us
closely follows the work of Bahdanau et al. (2015)—but the framework is agnostic to the particular
choice of attention mechanism.

The input to our layer is a set of node features, h = {~h1,
~h2, . . . ,

~hN},~hi 2 RF , where N is the
number of nodes, and F is the number of features in each node. The layer produces a new set of node
features (of potentially different cardinality F

0), h0 = {~h0
1,
~h
0
2, . . . ,

~h
0
N},~h0

i 2 RF 0
, as its output.

In order to obtain sufficient expressive power to transform the input features into higher-level fea-
tures, at least one learnable linear transformation is required. To that end, as an initial step, a shared
linear transformation, parametrized by a weight matrix, W 2 RF 0⇥F , is applied to every node. We
then perform self-attention on the nodes—a shared attentional mechanism a : RF 0 ⇥ RF 0 ! R
computes attention coefficients

eij = a(W~hi,W~hj) (1)

that indicate the importance of node j’s features to node i. In its most general formulation, the model
allows every node to attend on every other node, dropping all structural information. We inject the
graph structure into the mechanism by performing masked attention—we only compute eij for nodes
j 2 Ni, where Ni is some neighborhood of node i in the graph. In all our experiments, these will
be exactly the first-order neighbors of i (including i). To make coefficients easily comparable across
different nodes, we normalize them across all choices of j using the softmax function:

↵ij = softmaxj(eij) =
exp(eij)P

k2Ni
exp(eik)

. (2)

In our experiments, the attention mechanism a is a single-layer feedforward neural network,
parametrized by a weight vector ~a 2 R2F 0

, and applying the LeakyReLU nonlinearity (with negative
input slope ↵ = 0.2). Fully expanded out, the coefficients computed by the attention mechanism
(illustrated by Figure 1 (left)) may then be expressed as:

↵ij =
exp

⇣
LeakyReLU

⇣
~aT [W~hikW~hj]

⌘⌘

P
k2Ni

exp
⇣

LeakyReLU
⇣
~aT [W~hikW~hk]

⌘⌘ (3)

where ·T represents transposition and k is the concatenation operation.

Once obtained, the normalized attention coefficients are used to compute a linear combination of the
features corresponding to them, to serve as the final output features for every node (after potentially

3

||: vector concatenation

 Graph Attention Networks (GAT)
• Agrège l’information du voisinage à l’aide de l’attention:

• Notez que chaque nœud peut se connecter à lui-même :

Graph Attention Networks (GATs)

• Aggregate the information from the neighbors with attention

• Note that each node can attend to the node itself
Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Graph Attention Networks (GATs)

• Aggregate the information from the neighbors with attention

• Note that each node can attend to the node itself
Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13
~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Attentions multiples (Multi-head attention)
• De façon analogue à l’attention multiple dans les modèles de

transformers, l’attention multiple peut être mise à profit pour
l’apprentissage de graphe.
• Cette représentation peut concatener, ou simplement faire une

moyenne, des différents mécanismes d’attention.

Multi-head Attention

• Following the multi-head attention in the Transformer model, multi-
head can be used
• The new node representation can be the concatenation or average of
the outputs of different attention heads

Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Published as a conference paper at ICLR 2018

↵ij

~a

so
ftm

ax
j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵
14

~↵
1
5

~h
0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h
0
i = �

0

@
X

j2Ni

↵ijW~hj

1

A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
i =

K

k
k=1

�

0

@
X

j2Ni

↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Quelques problèmes (en pratique)
• Certains noeuds possèdent beaucoup de voisins
• Randomly sample a fixed number of neighbors in each iteration

of SGD (Hamilton et al. 2017).

Image tirée de Wang et al. (2019)

On peut échantillonner de façon aléatoire un nombre fixe de voisins pour chaque itération.

Réseaux de neurones avec
propagation de message

Gilmer et al. (2017). Neural Message Passing for Quantum Chemistry.

Réseaux de neurones avec
propagation du message (MPNN)
• Tout graphe de réseaux de neurones peut être formalisé à l’aide

du concept de propagation de message neural (neural message
passing)
• Le message (sous forme de vecteurs) est propagé de façon itérative à

travers les noeuds du graphe

• Deux fonctions
• Fonction de message
• Fonction de la mise à jour du noeud

Gilmer et al. (2017). Neural Message Passing for Quantum Chemistry.

Phase de propagation

v

w1 w2

w3 w4

AGREGER:

COMBINER:

Message Passing Phase

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

v

w1 w2

w3 w4
��OGUUCIG�HWPEVKQP
��XGTVGZ�WRFCVG�HWPEVKQP

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

AGGREGATE:

COMBINE:

Message Passing Phase

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

v

w1 w2

w3 w4
��OGUUCIG�HWPEVKQP
��XGTVGZ�WRFCVG�HWPEVKQP

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

AGGREGATE:

COMBINE:

Comment procéder pour apprendre une
représentation du graphe complète?
• Apprentissage de représentation pour un graphe

• Afin de prédire les propriétés d’une molécule

• Ajouter une fonction de lecture R, laquelle considère la dernière représentation

• � est la représentation complète du graphe
• R peut être une fonction très simple (somme, moyenne, etc…)

̂y

: fonction de lectureR

What if we want to learn the representations
of entire graphs?
• Learn the representations of molecular graphs
• For predicting the chemical properties of molecules

• Add a readout function, which is applied to the node representations
in the last layer:

• 51 is the representation of entire graph
• R can be some simple functions such summation or average

Under review as a conference paper at ICLR 2020

O

NH

F

N

NH

Cl

SH
NH

O

OH

Cl

NH

N

N

N

O

N

N

O

O

NH

N

H2N

S

Cl

NH

N

N

HO N

O

HO

Cl

Cl

S

NH

Br
N

H2N

O

N

Br

Br

N

S

O

O

F

NH2

O
Cl

O

Br

O

N

N
O

F

O

N
N

O

O

HO
NH

O

Cl

H2N
NH

O

O

I

I

N

S

O

OH

I

N

NH

N

NO
NH NH

N

O

NH2

N

O

NH

O

NH
N

F

Cl

N

O
N

Cl

Br

Cl

Cl

H2N

NH

S N O

NO

NH

Br

N

O

S

NH

O

N

N
Cl

NH2

N

NNHCl

N

O

NH
N

N

O

HO

NHO

H2N

O
N O

O

Br

F

F

F

Cl

O

NH

S

O

O
N

OH NH F

S

NH

N

O

N

S
S

NH
O

NH

O

NH

NH

NH2

O

N

N
NHN

O

NH2

NH
O

N

NH

F

N

N

OH

NS

O

O

N

Cl

N

Cl

O

NH

NH

NH

O

O

NN
N

I

Cl

N

NH2

S

Figure 3: 50 molecules sampled from prior.

14

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

��TGCFQWV�HWPEVKQPR

Applications
Système de recommandations**
• Prédire les items les plus pertinents pour un utilisateur
• Graphe usager-item ou encore item-item

**Qu et al. An End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation.

usager

item item

Applications
Compréhension du langage naturel (NLP)
• Étiquetage de rôles sémantiques (Semantic Role Labeling)
• Encode les phrases à l’aide de GCN

Image tirée de ??

Applications
Découverte de médicaments
• Réorientation de médicaments
• Graphe protéines - médicaments - maladie

• Prédiction des propriétés d’une molécule

Images tirées de Zeng et al. 2019

Applications
Optimisation combinatoire
• Problème du commis voyageur

Joshi et al. An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem.

Applications
Transports
• Prédiction du trafic:
• La carte routière comme un graphe

Yu et al. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting.
IJCAI’18.

Applications
Réseaux sociaux
• Prédiction d’influences
• Prédit le statut d’un usager en fonction de ses voisins ou «ami.e.s»

Qiu et al. DeepInf: Social Influence Prediction with Deep Learning.

Quelques implémentations
• PyTorch Geometric: https://pytorchgeometric.readthedocs.io/en/

latest/
• Deep Graph Learning: https://www.dgl.ai/

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai/

Exemple: GCN (Pytorch Geometric)
• https://github.com/rusty1s/pytorch_geometric/blob/master/examples/

gcn.py

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py

Merci!

