Feedforward Neural Networks

Jian Tang

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

The task

• The goal is to learn a mapping function $y = f(x; \theta)$ (e.g., for classification $f: \mathbb{R}^d \to \mathbb{C}$).

Example: image classification

Traditional Machine Learning

Hand-craftedFeature Extractor

Simple Trainable Classifier e.g., SVM, LR

Deep Learning= End-to-end Learning/Feature Learning

TrainableFeature Extractor

Trainable Classifier e.g., SVM, LR

Deep Learning= Learning Hierarchical representations

Hierarchical representations with increasing level of abstraction

- Image recognition
 - Pixel -> edge -> texton-> motif -> part -> object
- Speech
 - Sample -> spectral band -> sound -> phone -> word...
- Text
 - Character -> word -> phrase->clause-> sentence
 - ->paragraph-> document

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Neuron: Nonlinear Functions

• Input: linear combination:

$$a(\mathbf{x}) = b + \sum_{i} w_{i} x_{i} = \mathbf{w}^{T} \mathbf{x} + b$$

• Output: nonlinear transformation:

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(\mathbf{w}^T \mathbf{x} + b)$$

- w: are the weights (parameters)
- b is the bias term
- g(.) is called the activation function

Activation functions/Hidden Units

- Sigmoid function
 - g(x) = 1/(1 + exp(-x))
 - Map the input to (0,1)
- Tanh function
 - g(x) = (1-exp(-2x))/(1+exp(-2x))
 - Map the input to (-1,1)
- Rectified linear (ReLU) function
 - g(x) = max(0,x)
 - No upper bounded

Other activation functions

- Leaky ReLU (Maas et al. 2013)
 - $g(x) = \max(0, x) + \alpha \min(0, x)$
 - Fix α to a small value, e.g., 0.01
- Parametric ReLU (He et al. 2015)
 - Treat α as a parameter to learn

- Generalize rectified linear units
- Divide the output units into groups of k values, and output the maximum value in each group
- Provides a way of learning a piecewise linear function that responds to multiple directions in the input x space.

One Hidden layer Neural Networks

Input of the hidden layer:

$$a(\mathbf{x}) = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

• Nonlinear transformation:

$$h(\mathbf{x}) = g_1(a(\mathbf{x}))$$

Output layer

$$f(\mathbf{x}) = o(h(\mathbf{x}))$$

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Linear Units for Gaussian Output Distributions

- Given the hidden units \mathbf{h} , a layer of linear output units produces $\widehat{\mathbf{y}} = \mathbf{W}^T \mathbf{h} + \mathbf{b}$
- Linear output layers are often used to produce the mean of a conditional Gaussian distribution

$$p(y|x) = N(y|\hat{y}, I)$$

Sigmoid Units for Bernoulli Output Distributions

- Bernoulli output distributions: binary classification
- The goal is to define p(y=1|x), which can be defined as follows:

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

Softmax Units for Multinomial Output Distributions

- Multinomial output distributions: multi-class classification
- First, define a linear layer to predict the unnormalized log probabilities of softmax:

$$z = W^T h + b$$

• where $z_i = \log p(y = i | x)$. Formally, the softmax function is given by

•

$$p(y = i | \mathbf{x}) = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Multilayer Neural Networks

- Neural network with multiple hidden layers
- The output of previous layer as the input of next layer: (k=1..., L)

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

Final output layer

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost function
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Maximum Likelihood

• Most of the time, neural networks are used to define a distribution $p(y^t|x^t;\theta)$. Therefore, the overall objective is defined as:

$$argmax_{\theta} \frac{1}{T} \sum_{t} \log p(y^{t} | \boldsymbol{x}^{t}; \boldsymbol{\theta}) - \lambda \Omega(\boldsymbol{\theta})$$

• Or equivalently we can minimize the cross-entropy error.

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Universal Approximation

- Universal Approximation Theorem (Hornik, 1991)
 - "a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrary well, given enough hidden units"
- However, we may not be able to find the right parameters
 - The layer may be infeasibly large
 - Optimizing neural networks is difficult ...

Deeper Networks are Preferred

Figure: Empirical results showing that deeper networks generalize better

Deeper Networks are Preferred

Figure: Deeper models tend to perform better with the same number of parameter

Deeper Networks are Preferred

- There exist families of functions which can be approximated efficiently with deep networks but require a much larger model for shallow networks
- Statistical reasons
 - a deep model encodes a very general belief that the function we want to learn should involve composition of several simple functions
 - Or we believe the learning problem consists of discovering different levels of variations, with the high-level ones defined on the low-level (simple) ones (e.g., Pixel -> edge -> texton-> motif -> part -> object).

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Backpropagation with Stochastic Gradient Descent

- Gradient descent:
 - Update the parameters in the direction of gradients
 - Need to iterate over all the examples for every update
- Stochastic gradient descent
 - Perform updates after seeing each example
 - Initialize: $\boldsymbol{\theta} \equiv \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)}\}$
 - For t=1:T
 - for each training example $(\mathbf{x}^{(t)}, y^{(t)})$

$$\Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \Delta$$

Training epoch

=

Iteration of all examples

BackPropagation: Simple Chain Rule

$$y = g(x)$$
$$z = f(y) = f(g(x))$$

BackPropagation: Simple Chain Rule

$$\vec{y} = g(\vec{x})$$
$$z = f(\vec{y}) = f(g(\vec{x}))$$

$$\frac{\partial z}{\partial x_i} = \sum_{j} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

$$\nabla_{\vec{x}} z = \left(\frac{\partial \vec{y}}{\partial \vec{x}}\right)^T \nabla_{\vec{y}} z$$

$$\frac{\partial \vec{y}}{\partial \vec{x}}$$
 is the n x m Jacobian matrix of g

Forward Propagation

• For each training example (x, y), calculate the output based on current neural networks \hat{y} and the supervised loss $loss(y, \hat{y})$

```
Require: Network depth, l
Require: W^{(i)}, i \in \{1, ..., l\}, the weight matrices of the model
Require: b^{(i)}, i \in \{1, \dots, l\}, the bias parameters of the model
Require: x, the input to process
Require: y, the target output
   h^{(0)} = x
   for k = 1, \ldots, l do
      a^{(k)} = b^{(k)} + W^{(k)}h^{(k-1)}
     \boldsymbol{h}^{(k)} = f(\boldsymbol{a}^{(k)})
   end for
   \hat{\boldsymbol{y}} = \boldsymbol{h}^{(l)}
   J = L(\hat{\boldsymbol{y}}, \boldsymbol{y}) + \lambda \Omega(\theta)
```

Backward Propagation

- Calculate the gradients w.r.t. the parameters in each layer
 - Backward the errors in the output to the parameter in each layer

After the forward computation, compute the gradient on the output layer:

$$\boldsymbol{g} \leftarrow \nabla_{\hat{\boldsymbol{y}}} J = \nabla_{\hat{\boldsymbol{y}}} L(\hat{\boldsymbol{y}}, y)$$

for
$$k = l, l - 1, ..., 1$$
 do

Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise):

$$g \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J = g \odot f'(\boldsymbol{a}^{(k)})$$

Compute gradients on weights and biases (including the regularization term, where needed):

$$\nabla_{\boldsymbol{b}^{(k)}} J = \boldsymbol{g} + \lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\theta)$$
$$\nabla_{\boldsymbol{W}^{(k)}} J = \boldsymbol{g} \ \boldsymbol{h}^{(k-1)\top} + \lambda \nabla_{\boldsymbol{W}^{(k)}} \Omega(\theta)$$

Propagate the gradients w.r.t. the next lower-level hidden layer's activations:

$$oldsymbol{g} \leftarrow
abla_{oldsymbol{h}^{(k-1)}} J = oldsymbol{W}^{(k) op} \ oldsymbol{g}$$
 end for

Exercise

$$z_i = \sigma(\sum_{j=1}^M w_{ij}^1 x_j)$$

$$o_i = \sum_{j=1}^D w_{ij}^2 z_j$$

$$p(y = k) = \frac{\exp(o_k)}{\sum_{i=1}^{K} \exp(o_i)}$$

Regularization and Optimization

What is regularization

- The goal of machine learning algorithm is to perform well on the training data and generalize well to new data
- Regularization are the techniques to improve the generalization ability
 - i.e., avoid overfitting

Outline

- Regularization
 - Parameter Norm Penalties
 - Data set Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Parameter Norm Penalties

• Adding a parameter norm penalty $\Omega(\boldsymbol{\theta})$ to the objective function J. The regularized objective function is denoted as:

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- $\alpha \in [0, \infty)$ is a hyperparameter that controls the weights of the regularization term
- For regularization neural networks
 - Only the weights of the linear transformation at each layer are regularized
 - The biases are not regularized (requires less data than the weights to fit accurately)

L^2 Parameter Regularization

- $\Omega(\theta) = \frac{1}{2} ||\mathbf{w}||^2$, also know as weight decay or ridge regression
- The objective function:

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^T \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

$$\nabla_{w}\tilde{J}(w;X,y) = \alpha w + \nabla_{w}J(w;X,y)$$

• Update w with SGD:

$$\mathbf{w} = (1 - \epsilon \alpha)\mathbf{w} - \epsilon \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$$

Push w towards zero

L^1 Parameter Regularization

•
$$\Omega(\theta) = ||\mathbf{w}||_1 = \sum_i w_i$$
,

• The objective function:

$$\tilde{J}(w; \mathbf{X}, \mathbf{y}) = \alpha ||\mathbf{w}||_{1} + J(w; \mathbf{X}, \mathbf{y})$$

$$\nabla_{w} \tilde{J}(w; \mathbf{X}, \mathbf{y}) = \alpha \operatorname{sign}(\mathbf{w}) + \nabla_{w} J(w; \mathbf{X}, \mathbf{y})$$

- Compare to L2 regularization, L1 regularization results in a solution that is more sparse
 - Some parameters have an optimal value of zero
 - Can be used for feature selection

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Data Augmentation

- Best way to improve the performance of machine learning
 - Train it with more data
- Create fake data and add it to the training data
 - Translation
 - Rotation
 - Random crops
 - Inject noise in both the input and output and and output and out

•

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Noise Robustness

- Adding noise to the weights
 - Push the model into regions where the model is relatively insensitive to small variations in the weights
 - Find points that are not merely minima, but minima surrounded by flat regions.
- Adding noise at the output targets
 - Most data sets have some amount of mistakes in the output labels: y
 - Explicitly model the noise on the labels
 - For example, the training label y is correct with probability $1-\epsilon$, and any of the other labels with probability ϵ

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Semi-supervised Learning

- Semi-supervised learning: both unlabeled examples from p(x) and labeled examples p(x,y) are used to estimate p(y|x)
- Share parameters between the unsupervised objective p(x) and supervised objective p(y|x)
 - E.g., for both objectives, the goal is to learn a representation h = f(x), which can be shared across the two objectives
- A very hot topic now
 - Especially in pretraining language models in NLP.

Example:

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Multi-task Learning

 Jointly learning multi-tasks by sharing the same inputs and some intermediate representations, which capture a common pool of factors

- Model
 - Task-specific parameters
 - Generic parameters shared across all the tasks

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Early Stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead).

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Dropout

- Overcome overfitting by an ensemble of multiple different models
 - Trained with different architectures
 - Trained on different data sets
- Too expensive on deep neural networks
- Dropout:
 - Training multiple networks together by parameter sharing

Dropout

- Key idea: Cripple neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Dropout

- Use random binary masks m(k)
 - layer pre-activation for k>0

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

hidden layer activation (k=1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$$

Output activation (k=L+1)

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Dropout at Test Time

- At test time, we replace the masks by their expectation
 - This is simply the constant vector 0.5 if dropout probability is 0.5
 - For single hidden layer: equivalent to taking the geometric average of all neural networks, with all possible binary masks
- Can be combined with unsupervised pre-training
- Beats regular backpropagation on many datasets
- Ensemble: Can be viewed as a geometric average of exponential number of networks.

- Optimization
 - Parameter Initialization Strategies
 - Momentum
 - Adaptive Learning Rates (AdaGrad, RMSProp, Adam)
 - Batch Normalization

Parameter Initialization (Glorot and Bengio, 2010)

 For a fully connected network with m inputs and n outputs, the weights are sampled according to:

$$W_{ij} \sim U\left(-\frac{6}{\sqrt{m+n}}, \frac{6}{\sqrt{m+n}}\right).$$

 which aims to tradeoff between the goal of initializing all layers to have the same activation variance and the goal of initializing all layers to have the same gradient variance

Tricks of the Trade

- Normalizing your (real-valued) data:
 - \triangleright for each dimension x_i subtract its training set mean
 - \triangleright divide each dimension x_i by its training set standard deviation
 - this can speed up training
- Decreasing the learning rate: As we get closer to the optimum, take smaller update steps:
 - i. start with large learning rate (e.g. 0.1)
 - ii. maintain until validation error stops improving
 - iii. divide learning rate by 2 and go back to (ii)

Mini-batch, Momentum

- Make updates based on a mini-batch of examples (instead of a single example):
 - the gradient is the average regularized loss for that mini-batch
 - can give a more accurate estimate of the gradient
 - > can leverage matrix/matrix operations, which are more efficient

 Momentum: Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

Why Momentum really works?

The momentum term reduces updates for dimensions whose gradients change directions.

The momentum term increases for dimensions whose gradients point in the same directions.

Demo: http://distill.pub/2017/momentum/

Adapting Learning Rates

- Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^{2} \quad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

RMSProp: instead of cumulative sum, use exponential moving average

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^{2}$$

Adam: essentially combines RMSProp with momentum

$$\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

Batch Normalization

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization be useful at the level of the hidden layers?

- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
 - each unit's pre-activation is normalized (mean subtraction, stddev division)
 - > during training, mean and stddev is computed for each minibatch
 - > backpropagation takes into account the normalization
 - > at test time, the global mean / stddev is used

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
             Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                  // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                        // mini-batch variance
                                                                              // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)
                                                                      // scale and shift
```

Learned linear transformation to adapt to non-linear activation function (γ and β are trained)

References

• Chapter 7-8, Deep Learning book

Disclaim

• Some slides are taken from Ruslan Salakhutdinov's deep learning course at CMU.