Feedforward Neural Networks

Jian Tang
HEC Montreal
Mila-Quebec Al Institute

Email: jian.tang(@hec.ca

MONTREAL



http://hec.ca

The task

* The goal is to learn a mapping function y = f(x; @) (e.g., for
classification f: R¢ — C).

%% V..=;i airplane
EEH“‘ automobile
Tmll RES ¥ ERE bird
el b LA o cat
SENTMEEES |~
AR [l 1o | SN dog
EEERESDANE irog
EEEEEXEE rorss
=T PP ship
W RNEESES0 truck

Example: image classification



Traditional Machine Learning

Hand-crafted Simple Trainable Classifier
Feature Extractor j> e.g., SVM, LR

Domain experts



Deep Learning= End-to-end Learning/Feature
Learning

Trainable Trainable Classifier
Feature Extractor j> e.g., SVM, LR

Domain expert



Deep Learning=

Learning Hierarchical representations

ion

Low-Level
Feature

Mid-Level
Feature

High-Level
_— >

Feature

Trainable
Classifier

(Figure from LeCun)



Hierarchical representations with increasing
level of abstraction

* Image recognition
* Pixel -> edge -> texton-> motif -> part -> object

* Speech

e Sample -> spectral band -> sound -> phone -> word...

* Text
e Character -> word -> phrase->clause-> sentence

->paragraph-> document

(slides from LeCun)



Outline

* Network Components
* Neurons (Hidden Units)
* Output units
* Cost functions

e Architecture design
* Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Neuron: Nonlinear Functions

* Input: linear combination:

a(x) =b+2WiXi =WTx+b
i

e Qutput: nonlinear transformation:
h(x) = g(a(x)) = gw'x + b)

e w: are the weights (parameters)

 bis the bias term
* g(.) is called the activation function




Activation functions/Hidden Units

° Slgm0|d function 5_S|gm°,d .................. e
+ g(x) = 1/(1+exp(x)) oy S S— £
* Map the input to (0,1) 5| softplus : :

* Tanh function
* 8(x) = (1-exp(-2x))/(1+exp(-2x))
 Map the input to (-1,1)
 Rectified linear (ReLU) function
e g(x) =max(0,x)
* No upper bounded




Other activation functions

* Leaky ReLU (Maas et al. 2013)  .coi ' reson2 /  Regont ** Region
* g(x) = max(0,x) + amin(0, x) /

* Fix a to a small value, e.g., 0.01

* Parametric ReLU (He et al. 2015)

* Treat a as a parameter to learn

* Maxout units (Goodfellow et al. ,2013)

* Generalize rectified linear units

* Divide the output units into groups of k values, and output the maximum
value in each group

* Provides a way of learning a piecewise linear function that responds to
multiple directions in the input x space.

RelLU LRelU and PRelLU Maxout (k=4)



One Hidden layer Neural Networks

* Input of the hidden layer:
a(x) =WTx+b
 Nonlinear transformation:

h(x) = g1(a(x))
e Qutput layer

f(x) = o (h(x))



Outline

* Network Components
* Neurons (Hidden Units)
* Qutput units
* Cost functions

e Architecture design
* Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Linear Units for Gaussian Output Distributions

* Given the hidden units h, a layer of linear output units produces y =
W'h+ b

* Linear output layers are often used to produce the mean of a
conditional Gaussian distribution

p(ylx) = Ny|y,I)



Sigmoid Units for Bernoulli Output
Distributions

e Bernoulli output distributions: binary classification
* The goal is to define p(y = 1|x), which can be defined as follows:

p(y = 1|x) = o(w'h + b)



Softmax Units for Multinomial Output
Distributions

* Multinomial output distributions: multi-class classification

* First, define a linear layer to predict the unnormalized log
probabilities of softmax:

z=W'h+b

* where z; = logp(y = i|x) . Formally, the softmax function is given by

exp(z;)
i €xp(z;)

p(y =i|x) =3



Multilayer Neural Networks

* Neural network with multiple hidden layers
* The output of previous layer as the input

of next layer: (k=1..., L)
a®) (x) = b®) £ WERk=1)(x)

h® (x) = g(a™(x))

* Final output layer

h(+) (x) = o(al“+) (x)) = f(x)



Outline

* Network Components
* Neurons (Hidden Units)
* Output units
* Cost function

e Architecture design
* Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Maximum Likelihood

* Most of the time, neural networks are used to define a distribution
p(yt|xt; @). Therefore, the overall objective is defined as:

1
argmaxe z logp(yt|xt; 0) — 1Q(0)
t

* Or equivalently we can minimize the cross-entropy error.



Outline

* Network Components
* Neurons (Hidden Units)
* Output units
* Cost functions

e Architecture design
* Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Universal Approximation

e Universal Approximation Theorem (Hornik, 1991)

* “asingle hidden layer neural network with a linear output unit can
approximate any continuous function arbitrary well, given enough hidden
units”

* However, we may not be able to find the right parameters ....
* The layer may be infeasibly large
* Optimizing neural networks is difficult ...



Deeper Networks are Preferred

Effect of Depth

'3 | 5 6 7 8 9 10 11
Number of hidden layers

Figure: Empirical results showing that deeper networks generalize better



Deeper Networks are Preferred

Effect of Number of Parameters

97 I I I ! I

96 L e—e 3 convolutional |
X +—+ 3, fully connected
- 9Ok . =
& V¥ 11. convolutional
= 9 :
a3} — , _
z T '
oy -

91 ] ] | | |

0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x10%

Figure: Deeper models tend to perform better with the same number of parameter



Deeper Networks are Preferred

* There exist families of functions which can be approximated
efficiently with deep networks but require a much larger model for
shallow networks

e Statistical reasons

* adeep model encodes a very general belief that the function we want to
learn should involve composition of several simple functions

* Or we believe the learning problem consists of discovering different levels of
variations, with the high-level ones defined on the low-level (simple) ones
(e.g., Pixel -> edge -> texton-> motif -> part -> object).



Outline

* Network Components
* Neurons (Hidden Units)
* Output units
* Cost functions

e Architecture design
* Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Backpropagation with Stochastic Gradient
Descent

* Gradient descent:
e Update the parameters in the direction of gradients
* Need to iterate over all the examples for every update

A

 Stochastic gradient descent " nitia F ot
weight !
* Perform updates after seeing each example g ﬂ
- Initialize: 9 = (W) b WD) pI+I1 |
L—L// ’ JGIobaI cost minimum
- For t=1 :T _— >min(W)

- for each training example (x'9,y®)  ~ v
Training epoch
A = =Vol(f(x!":0),y'") = AVeQ(0) - -

0 —60-+aA lteration of all examples
/




BackPropagation: Simple Chain Rule

dz dzdy
dx dydx

y = g(x)
z=f)=f(gkx))



BackPropagation: Simple Chain Rule

y =g(x)
z=f)=f(g))

0z _ 0z 0Yy;
0x; - dy; 0x;
o T
_ (9y

7:z = (5z) V2

0y

—— isthe n x m Jacobian matrix of g
0x



Forward Propagation

* For each training example (x, y), calculate the output based on
current neural networks y and the supervised loss loss(y, )

Require: Network depth. [

Require: W e {1,.... [}, the weight matrices of the model
Require: b",ic {1..... [}, the bias parameters of the model

Require: a, the input to process
Require: y. the target output
h(0) — p

end for
y = h"
J =Ly, y)+ \Q(6H)




Backward Propagation

e Calculate the gradients w.r.t. the parameters in each layer
* Backward the errors in the output to the parameter in each layer

After the forward computation, compute the gradient on the output layer:

g < VgJ =VyL(y.y)

for k=1011-1,..., 1 do
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
gV, n)=g¢ f’t{a“"))
Compute gradients on weights and biases (including the regularization term,
where needed):
Vi J =g+ AV ()
Vi wd =g h* DT L AV wQ(80)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g« Ve =WHig

end for




Exercise

Output

Hidden Layer




Regularization and Optimization



What is regularization

* The goal of machine learning algorithm is to perform well on the
training data and generalize well to new data

* Regularization are the techniques to improve the generalization
ability

* i.e., avoid overfitting



Outline

* Regularization

* Parameter Norm Penalties
Data set Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Parameter Norm Penalties

* Adding a parameter norm penalty 2(0) to the objective function J.
The regularized objective function is denoted as:

J(0;X,y) =](6;X,y) + a(0)

* a € |0,00) is a hyperparameter that controls the weights of the
regularization term

* For regularization neural networks
* Only the weights of the linear transformation at each layer are regularized

* The biases are not regularized (requires less data than the weights to fit
accurately)



L% Parameter Regularization

2
¢ Q(0) = % ||w|| , also know as weight decay or ridge regression
* The objective function:

Jw;X,) = ZwWw +](W; X, y)

V] (w; X, y) = aw + G,](w; X, y)
* Update w with SGD:
w=(1l-ex)w—el,J(w;X,y)

 Push w towards zero



L' Parameter Regularization

£ 0(0) = |Iwl|, = Z;w,,
* The objective function:

Jw;X,y) = allwl| +](w; X, y)
V) (W; X, y) = asign(w) + 7,J(w; X, y)

 Compare to L2 regularization, L1 regularization results in a solution
that is more sparse

 Some parameters have an optimal value of zero
* Can be used for feature selection



Outline

* Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Data Augmentation

* Best way to improve the performance of machine learning
* Train it with more data

* Create fake data and add it to the training data

* Translation
7 |
C -
\

Rotation
Random crops
Inject noise in both the input and output

EHET




Outline

* Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Noise Robustness

* Adding noise to the weights

* Push the model into regions where the model is relatively insensitive to small
variations in the weights

* Find points that are not merely minima, but minima surrounded by flat
regions.

* Adding noise at the output targets
* Most data sets have some amount of mistakes in the output labels: y
* Explicitly model the noise on the labels

* For example, the training label y is correct with probability 1 — €, and any of
the other labels with probability €



Outline

* Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Semi-supervised Learning

* Semi-supervised learning: both unlabeled examples from p(x) and
labeled examples p(x,y) are used to estimate p(y|x)

* Share parameters between the unsupervised objective p(x) and
supervised objective p(y|x)

e E.g., for both objectives, the goal is to learn a representation h = f(x), which
can be shared across the two objectives

* A very hot topic now
* Especially in pretraining language models in NLP.



Image from Internet



Outline

* Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Multi-task Learning

e Jointly learning multi-tasks by sharing the same inputs and some
intermediate representations, which capture a common pool of
factors

* Mode ¢ )
* Task-specific parameters
* Generic parameters shared across all the tasks Q



Outline

* Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5

04 underfitting overfitting
0,3
0,2

0,1

0,0

number of epochs



Outline

* Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout



Dropout

* Overcome overfitting by an ensemble of multiple different models

* Trained with different architectures
 Trained on different data sets

* Too expensive on deep neural networks

* Dropout:
* Training multiple networks together by parameter sharing



Dropout

e Key idea: Cripple neural network by removing hidden units
stochastically

> each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to b
other units

> hidden units must be more
generally useful h®) (x)

e Could use a different dropout
probability, but 0.5 usually works well







Dropout

e Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = b*) 4 WEp(b=1) (x)
> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x)) em®

>  Output activation (k=L+1) h{) (x)

h(L+1)(X) _ o(a(L“)(x)) — £(x) w




Dropout at Test Time

o At test time, we replace the masks by their expectation

>  This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

e Can be combined with unsupervised pre-training

e Beats regular backpropagation on many datasets

 Ensemble: Can be viewed as a geometric average of exponential
number of networks.



Outline

* Optimization
* Parameter Initialization Strategies
* Momentum
e Adaptive Learning Rates (AdaGrad, RMSProp, Adam)
* Batch Normalization



Parameter Initialization (Glorot and Bengio,
2010)

* For a fully connected network with m inputs and n outputs, the
weights are sampled according to:

6 6
Wl-j~U(— , )
Vvm+n vm+n

* which aims to tradeoff between the goal of initializing all layers to
have the same activation variance and the goal of initializing all layers

to have the same gradient variance



Tricks of the Trade

e Normalizing your (real-valued) data:

> for each dimension x; subtract its training set mean
> divide each dimension x; by its training set standard deviation

> this can speed up training

e Decreasing the learning rate: As we get closer to the optimum,
take smaller update steps:

i.  start with large learning rate (e.g. 0.1)
ii.  maintain until validation error stops improving

iii. divide learning rate by 2 and go back to (ii)



Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a
single example):
> the gradient is the average regularized loss for that mini-batch
> can give a more accurate estimate of the gradient

> can leverage matrix/matrix operations, which are more efficient

« Momentum: Can use an exponential average of previous

gradients:

VY = Vel(F(x®), y®) + gVy



Why Momentum really works?

The momentum term reduces updates for
dimensions whose gradients change directions.

Qumm

The momentum term increases for dimensions whose

gradients point in the same directions.
Demo : http://distill. pub/2017/momentum/

Optimum

S



Adapting Learning Rates

e Updates with adaptive learning rates (“one learning rate per
parameter”)

> Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

2 —@w)  Vel(f(x®),y®)
(t) _ ~(t=1) H(F(x®) @) v ’
7 =x +<V9((X ),y )) 0 SO

> RMSProp: instead of cumulative sum, use exponential moving
average

1O = B0 4 (1= B) (Vol(E(xD), )
=0 _ Vel(f(x™), y™)

> Adam: essentially combines
RMSProp with momentum

V, =
’ VD + e



Batch Normalization

 Normalizing the inputs will speed up training (Lecun et al. 1998)

> could normalization be useful at the level of the hidden layers?

e Batch normalization is an attempt to do that (loffe and Szegedy, 2014)

> each unit’s pre-activation is normalized (mean subtraction, stddev
division)

» during training, mean and stddev is computed for each minibatch

>  backpropagation takes into account the normalization

> attest time, the global mean / stddev is used



Batch Normalization

Input: Values of x over a mini-batch: B = {z1. . };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

1 m
— — : // mini-batch

uB & — ; x mini-batch mean
1 m

0% = (z; — pB)* // mini-batch variance
i=1

T; Ti — BB // normalize

o Voete
' y; < Z;+B=BN,g(z;) | /l scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained)



References

* Chapter 7-8, Deep Learning book



Disclaim

* Some slides are taken from Ruslan Salakhutdinov’s deep learning
course at CMU.



