
Natural Language Understanding
Jian Tang

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

mailto:jian.tang@hec.ca

A Huge Amount of Unstructured Text

Traditional media Social media Electronic Health Records

Document (Sentence) Classification

Topic classification Sentiment classification

Document Clustering

Information Retrieval

Question Answering

Text Summarization

Dialogue Systems

Machine Translation

Research Questions

• How to effectively learn the representations of words, phrases,
sentences and documents?

• How to generate nature language?

Classical Word Representations

• Words as atomic symbols: “One-hot” representation

• Documents: “Bag-of-words”

“network” = [0,1,0,0,0,0,0]

“networks” = [0,0,0,0,1,0,0] 0
AND

• Ignore the semantic relatedness between words

• The curse of dimensionality
• As large as millions in a large text corpus.

Neural Word Embeddings (Bengio et al. 2003)

• Represent each word with a continuous dense vector
• Hundreds or thousands of dimensions

• Words with similar meanings are represented with similar vectors

• Represent phrases, sentences and documents through word
embedding

Distributional Hypothesis

• “You shall know a word by the company it keeps” (J.R. Firth 1957:11)

• The meaning of a word can be represented by its neighbors

A telecommunications network allows computers to exchange data

In information technology, a network is a series of points or nodes interconnected...

Represent “network” with the neighboring words

Word2VEC (Mikolov et al. 2013)

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

• Skip-gram: finding word representations that are useful for predicting the surrounding words in
a sentence or a document

A telecommunications network allows computers to exchange data

Objective of Skip-gram

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

• Given a sequence of training words 𝑤1𝑤2, … , 𝑤𝑇, the
objective of the skip-gram is to maximize the average log
probability:

• Where c is the size of the training context. 𝑝(𝑤𝑡+𝑗|𝑤𝑡) is
defined with a softmax function

• Where 𝑣𝑤 and 𝑣𝑤
′ are the “input” and “output” vector

representations of w. W is the vocabulary size.

• Calculating 𝑝 𝑤𝑡+𝑗 𝑤𝑡 is very computational expensive

1

𝑇
෍

𝑡=1

𝑇

෍

−𝑐≤𝑗≤𝑐,𝑗≠0

log 𝑝(𝑤𝑡+𝑗|𝑤𝑡)

𝑝 𝑤𝑡+𝑗 𝑤𝑡 =
exp(𝑣𝑤𝑂

′ 𝑇
𝑣𝑤𝐼

)

σ𝑤=1
𝑊 exp(𝑣𝑤

′ 𝑇𝑣𝑤𝐼
)

Negative Sampling (Mikolov et al. 2013)

• Modify the objective as:

• It aims to distinguish the target word 𝑤𝑂 from draws from the noise distribution
𝑃𝑛(𝑤) using logistic regression. k is the number of negative samples for each
input word (k is usually 5-20).

• 𝑃𝑛(𝑤) is usually set as the unigram distribution U(𝑤) raised to the 3/4rd power,
i.e.,

𝑃𝑛 𝑤 = 𝑈 𝑤 0.75/𝑍

log 𝜎(𝑣′𝑤𝑂
𝑇 𝑣𝑤𝐼

) +෍

𝑖=1

𝑘

𝔼𝑤𝑖~𝑃𝑛 𝑤
log 𝜎(−𝑣′𝑤𝑖

𝑇 𝑣𝑤𝐼
)

CBOW (Mikolov et al. 2013)

• Instead of using center words to predict nearby words, using nearby
words to predict the center words

• Calculating the context embedding

• Predict the center word:

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)𝑝 𝑤𝑡 𝑤𝑡−𝑐, … , 𝑤𝑡−1, 𝑤𝑡+1, . . , 𝑤𝑡+𝑐 =
exp(𝑣𝑤𝑡

′ 𝑇
𝑣𝑐)

σ𝑤=1
𝑊 exp(𝑣𝑤

′ 𝑇𝑣𝑐)

𝑣𝑐 =
1

2𝑐
෍

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑣𝑗

Word Analogy

• Find a word that is similar to small in the same sense as biggest is
similar to big.

• Compute vector X = vector(“biggest”)-vector(“big”) + vector(“small”)

• Then search the vector space for the word closest to X measured by
cosine distance, and use it as the answer.

Examples

Word Embeddings in Pytorch

• https://github.com/blackredscarf/pytorch-SkipGram

• https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutori
al.html

https://github.com/blackredscarf/pytorch-SkipGram
https://github.com/blackredscarf/pytorch-SkipGram
https://github.com/blackredscarf/pytorch-SkipGram
https://github.com/blackredscarf/pytorch-SkipGram
https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html

Sequence to Sequence

• Machine translation

Sequence to Sequence

• Text Summarization

Sequence to Sequence

• Dialogue systems

Sequence2Sequence (Encoder-Decoder)

Sequence to Sequence Model

• Given an input sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐿), we want to map it to an
output sequence 𝐲 = 𝑦1, 𝑦2, … , 𝑦T . We are essentially trying to
model the conditional probability

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇|𝑥1, 𝑥2, … , 𝑥𝐿)

Sequence to Sequence (Encoder-Decoder)

• Encoder
• One Recurrent Neural Networks

• Decoder
• Another Recurrent Neural Networks

Encoder: one Recurrent Neural Network

• C is the last hidden state of input

 sequence
• summary of the input sequence

𝑦0 𝑦1 𝑦𝑇−1

Decoder: another Recurrent Neural Network

• Decode the output sequence y based on

• the input sequence x

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦T|𝑥1, 𝑥2, … , 𝑥L)

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇|𝒄)

𝑦0 𝑦1 𝑦𝑇−1

Decoder

• The hidden representation:

• The conditional distribution of next symbol

𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑦𝑡 , 𝒄)

𝑝 𝑦𝑡 𝑦𝑡−1,𝑦𝑡−2, … , 𝑦1, 𝑐 = 𝑔(𝑠𝑡 , 𝑦𝑡−1, 𝒄)

Optimization with Maximum Likelihood

• Given a set of training data (𝒙𝑛, 𝒚𝑛 }𝑛=1
𝑁 , the encoder-decoder

components are jointly optimized by maximizing the conditional log-
likelihood:

max
𝜃

1

𝑁
෍log 𝑝𝜃(𝒚𝑛|𝒙𝑛)

Results on Machine Translation

Method test BLEU score (ntst14)

Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17

Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00

Ensemble of 2 reversed LSTMs, beam size 12 33.27

Ensemble of 5 reversed LSTMs, beam size 2 34.50

Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)

Baseline System [29] 33.30

Cho et al. [5] 34.54

Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61

Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card

She was given a card by me in the garden

She gave me a card in the garden

In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Table: Results from English to French

• Both encoder and decoder are RNNs

Worde Embeddings Learned by Seq2Seq

Phrase Embeddings Learned by Seq2Seq

• Phrase embeddings are encoded with the summary vector c

Seq2Seq in Pytorch

• https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-
%20Learning%20Phrase%20Representations%20using%20RNN%20En
coder-
Decoder%20for%20Statistical%20Machine%20Translation.ipynb

https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb

Thanks!

	Slide 1: Natural Language Understanding
	Slide 2: A Huge Amount of Unstructured Text
	Slide 3: Document (Sentence) Classification
	Slide 4: Document Clustering
	Slide 5: Information Retrieval
	Slide 6: Question Answering
	Slide 7: Text Summarization
	Slide 8: Dialogue Systems
	Slide 9: Machine Translation
	Slide 10: Research Questions
	Slide 11: Classical Word Representations
	Slide 12: Neural Word Embeddings (Bengio et al. 2003)
	Slide 13: Distributional Hypothesis
	Slide 14: Word2VEC (Mikolov et al. 2013)
	Slide 15: Objective of Skip-gram
	Slide 16: Negative Sampling (Mikolov et al. 2013)
	Slide 17: CBOW (Mikolov et al. 2013)
	Slide 18: Word Analogy
	Slide 19: Examples
	Slide 20: Word Embeddings in Pytorch
	Slide 21: Sequence to Sequence
	Slide 22: Sequence to Sequence
	Slide 23: Sequence to Sequence
	Slide 24: Sequence2Sequence (Encoder-Decoder)
	Slide 25: Sequence to Sequence Model
	Slide 26: Sequence to Sequence (Encoder-Decoder)
	Slide 27: Encoder: one Recurrent Neural Network
	Slide 28: Decoder: another Recurrent Neural Network
	Slide 29: Decoder
	Slide 30: Optimization with Maximum Likelihood
	Slide 31: Results on Machine Translation
	Slide 32: Worde Embeddings Learned by Seq2Seq
	Slide 33: Phrase Embeddings Learned by Seq2Seq
	Slide 34: Seq2Seq in Pytorch
	Slide 35: Thanks!

