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ocument (Sentence) Classification

Topic classification

APPLICATION
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Document Clustering
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Information Retrieval
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Question Answering

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by
the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.

Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901




Text Summarization

Russian Defense Minister Ivanov called Sunday for the creation of a joint
front for combating global terrorism.

!

Russia calls for joint front against terrorism.



Dialogue Systems
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Examples

“Explain quantum computing in
simple terms™ -

"Got any creative ideas for a 10
year old’s birthday?® —

*How do | make an HTTP request
n Javascnpt?® -

ChatGPT

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-up
corrections

Trained to dechine mappropriate
requests

AN

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Umited knowledge of world and
events after 2021




Machine Translation
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Research Questions

* How to effectively learn the representations of words, phrases,
sentences and documents?

* How to generate nature language?



Classical Word Representations

* Words as atomic symbols: “One-hot” representation

 Documents: “Bag-of-words”

“network” =

“networks” =

0,1,0,0,0,0,0.
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AND

* lgnore the semantic relatedness between words

* The curse of dimensionality
* Aslarge as millions in a large text corpus.

0



Neural Word Embeddings (Bengio et al. 2003)

* Represent each word with a continuous dense vector
* Hundreds or thousands of dimensions
* Words with similar meanings are represented with similar vectors

* Represent phrases, sentences and documents through word
embedding
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Distributional Hypothesis

* “You shall know a word by the company it keeps” (J.R. Firth 1957:11)
* The meaning of a word can be represented by its neighbors

A telecommunications network allows computers to exchange data
In information technology, a network is a series of points or nodes interconnected...

N 4

Represent “network” with the neighboring words



Word2VEC (Mikolov et al. 2013)

* Skip-gram: finding word representations that are useful for predicting the surrounding words in
a sentence or a document

A telecommunications network allows computers to exchange data

INPUT PROJECTION OUTPUT
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Objective of Skip-gram

* Given a sequence of training words wyw,, ..., wr, the

objective of the skip-gram is to maximize the average log

probability:

T
Y logpQweswe)

t=1 —c<j<c,j#0

* Where c is the size of the training context. p(w;4 ;|w;) is
defined with a softmax function

T
eXp (v\:VO vWI)

T
2&1:1 exp (Vy vw,)

p(Wt+j|Wt) =

* Where v, and v,, are the “input” and “output” vector
representations of w. W is the vocabulary size.

* Calculating p(wtﬂ- |Wt) is very computational expensive

INPUT PROJECTION OUTPUT
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Negative Sampling (Mikolov et al. 2013)

* Modify the objective as:

k
1080V " V) + ) Buggeryy 1080 (=", i)

=1

* It aims to distinguish the target word w, from draws from the noise distribution
P, (w) using logistic regression. k is the number of negative samples for each
input word (k is usually 5-20).

* P,(w) is usually set as the unigram distribution U(w) raised to the 3/4rd power,
l.e.,

B(w) =UW)°7>/Z



CBOW (Mikolov et al. 2013)

* Instead of using center words to predict nearby words, using nearby
words to predict the center words

 Calculating the context embedding
INPUT PROJECTION OUTPUT

—c<j<c,j#0

e Predict the center word:

p(thwt—c; vy Wi, Wt+1""Wt+C) = "



Word Analogy

* Find a word that is similar to small in the same sense as biggest is
similar to big.

* Compute vector X = vector(“biggest”)-vector(“big”) + vector(“small”)

* Then search the vector space for the word closest to X measured by
cosine distance, and use it as the answer.

female queen

king
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Examples

Country and Capital Vectors Projected by PCA
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Word Embeddings in Pytorch

* https://github.com/blackredscarf/pytorch-SkipGram
* https://pytorch.org/tutorials/beginner/nlp/word embeddings tutori

al.html
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Sequence to Sequence

e Machine translation
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Sequence to Sequence

 Text Summarization

Russian Defense Minister Ivanov called Sunday for the creation of a joint
front for combating global terrorism.

!

Russia calls for joint front against terrorism.



Sequence to Sequence

* Dialogue systems

I: Hello Jack, my name is Chandralekha.

R: Nice to meet you, Chandralekha.

I: This new guy doesn’t perform exactly
as we expected,

R: What do you mean by "doesn’t perform

exactly as we expected®™?



Sequence2Sequence (Encoder-Decoder)

input —>| encoder
sentence
O
fixed size
representation
<
output =
sentence decoder

(Neco&Forcada, 1997)
(Kalchbrenner et al., 2013)

(Cho et al., 2014)

(Sutskever et al., 2014)

RNN Encoder-Decoder (Cho et al. 2014):

Y1 Yi\ ////yT
Decoder | s, |5, st
Representation C
Encoder | M1 h, -« O

| |
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Sequence to Sequence Model

* Given an input sequence x = (x4, X5, ..., X; ), Wwe want to map it to an
output sequencey = (Y4, Vo, ..., Y1). We are essentially trying to
model the conditional probability

p(ylx) — p(le Y2, ---;YTlxl;xz; "'JXL)



Sequence to Sequence (Encoder-Decoder)

* Encoder
* One Recurrent Neural Networks

e Decoder
e Another Recurrent Neural Networks



Encoder: one Recurrent Neural Network

* Cis the last hidden state of input

sequence
 summary of the input sequence

RNN Encoder-Decoder (Cho et al. 2014):
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Decoder: another Recurrent Neural Network

RNN Encoder-Decoder (Cho et al. 2014).
Yo y YT-1

NN S

e Decode the output sequence y based on
* the input sequence x

p(yIx) = p(y1, 2, - Yrlx1, X2, o0, XL)

p(ylx) =p(y1,¥2, ..., ¥7lC)

Encoder | 1 hy —— | hy




Decoder

* The hidden representation:
Decoder

St = f(St—1, Y1, €)

* The conditional distribution of next symbol

p()’tl)’t—1,3’t—2; o Y1) C) = g(s¢, Yi—1,€) Encoder

Representation




Optimization with Maximum Likelihood

* Given a set of training data {(x,,, ¥,,)}_,, the encoder-decoder
components are jointly optimized by maximizing the conditional log-
likelihood:

1
max - z log pg (Yn|Xn)



Results on Machine Translation

e Both encoder and decoder are RNNs

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table: Results from English to French
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Phrase Embeddings Learned by Seq2Seq

* Phrase embeddings are encoded with the summary vector ¢
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Seqg2Seq in Pytorch

* https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-
%20Learning%20Phrase%20Representations%20using%20RNN%20En

coder-
Decoder%20for%20Statistical%20Machine%20Translation.ipynb
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https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/2%20-%20Learning%20Phrase%20Representations%20using%20RNN%20Encoder-Decoder%20for%20Statistical%20Machine%20Translation.ipynb

Thanks!
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