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Sequence2Sequence (Encoder-Decoder)
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Sequence to Sequence Model

• Given an input sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑇), we want to map it to an 
output sequence 𝐲 = 𝑦1, 𝑦2, … , 𝑦𝑇′ . We are essentially trying to 
model the conditional probability 

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇′|𝑥1, 𝑥2, … , 𝑥𝑇)



Encoder: one Recurrent Neural Network

• C is the last hidden state of input 

     sequence
• summary of the input sequence
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Decoder: another Recurrent Neural Network

• Decode the output sequence y based on

•  the input sequence x

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇′|𝑥1, 𝑥2, … , 𝑥𝑇)

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇′|𝒄)

𝑦0 𝑦1 𝑦𝑇−1



Decoder: another Recurrent Neural Network

• Decode the output sequence y based on

•  the input sequence x

𝒔𝑡 = 𝑓(𝒔𝑡−1,𝒚𝑡−1, 𝒄)

𝑝 𝑦𝑡 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦1, 𝑐 = 𝑔(𝒔𝑡 , 𝑦𝑡−1, 𝑐)

𝑦0 𝑦1 𝑦𝑇−1



RNN Encoder-Decoder Issues
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Attention-based Encoder-Decoder



New Encoder



New Decoder
𝑦𝑖_1



Alignment Model

Calculate context:
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Output model

Previous output

current hidden state

Current context

Architecture: Fully connected + Maxout

𝑦𝑖_1



Update hidden state

Previous hidden state

Previous output

Current context

Architecture: GRU

𝑦𝑖_1



Quantitative Results



Alignment between the Words



Attention Seq2Seq

• https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-
%20Neural%20Machine%20Translation%20by%20Jointly%20Learning
%20to%20Align%20and%20Translate.ipynb

https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb


Attention is All You Need



Sequence2Sequence (Encoder-Decoder)
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Attention-Based Encoder-Decoder
𝑦𝑖_1

Encoder Attention-based Decoder



Limitations of Previous Seq2Seq Models

• The encoders or decoders in the sequence to sequence models are 
generally implemented with recurrent neural networks
• Sequential computation

• Non-parallel



Attention is all you need (Vaswani et al. 2017)

• The Transformer (Vaswani et al. 2017)
• Only attention is used in both encoder and decoder

• Parallelizable



Encoder

• A stack of N=6 identical layers

• Each layer are composed of two sublayers
• Multi-head self-attention

• Position-wise fully connected feed-forward 
network

• Residual connection followed by 
normalization are used in both sublayers
• 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 𝑥 )



Multi-head Attention

• Attention
• Mapping a query and a set of key-value pairs to an output

• Query, Keys, and Values are all vectors

• The output is a weighted sum of the values, with the weights calculated 
according to a softmax function depending on the similarities between 
queries and keys



Multi-head Attention

• Scaled Dot-Product Attention
• Avoiding pushing the softmax  function into regions 

where it has extremely small gradients.

d_k: dimension of keys and queries



Multi-head Attention

• Multi-head Attention
• Linearly project the queries, keys, and values h times 

with different, learned linear projects respectively

• Concatenate the outputs and project again



Position-wise Feed-Forward Network

• Applied to each position separately and identically
• Two linear transformations with RELU as the activation in between

• Different parameters are used across different layers 



Positional Encoding
• Without recurrence and convolution, the order information is lost

• Need to encode the relative or absolute position of the tokens in the 
sequence

• Position encodings are added to both the embeddings of the tokens 
in both encoder and decoder

• Sine and cosine functions of different frequencies are used:

• Pos is the position and i is the dimension



Decoder

• N=6 identical layers

• Each layer
• Masked multi-head attention

• Position-wise fully connected feed-forward 
network

• Multi-head attention over the output of the 
encoder stack

• Residual connection followed by 
normalization are used in all the three 
sublayers



Discussion: advantages of Self-Attention

• Complexity

• Short-range v.s. long-range dependency

• Interpretability



Results



Thanks!
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