
Attention, Transformers
Jian Tang

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

mailto:jian.tang@hec.ca

Sequence2Sequence (Encoder-Decoder)

𝑦0 𝑦1 𝑦𝑇−1

Sequence to Sequence Model

• Given an input sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑇), we want to map it to an
output sequence 𝐲 = 𝑦1, 𝑦2, … , 𝑦𝑇′ . We are essentially trying to
model the conditional probability

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇′|𝑥1, 𝑥2, … , 𝑥𝑇)

Encoder: one Recurrent Neural Network

• C is the last hidden state of input

 sequence
• summary of the input sequence

𝑦0 𝑦1 𝑦𝑇−1

Decoder: another Recurrent Neural Network

• Decode the output sequence y based on

• the input sequence x

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇′|𝑥1, 𝑥2, … , 𝑥𝑇)

𝑝 𝒚 𝒙 = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇′|𝒄)

𝑦0 𝑦1 𝑦𝑇−1

Decoder: another Recurrent Neural Network

• Decode the output sequence y based on

• the input sequence x

𝒔𝑡 = 𝑓(𝒔𝑡−1,𝒚𝑡−1, 𝒄)

𝑝 𝑦𝑡 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦1, 𝑐 = 𝑔(𝒔𝑡 , 𝑦𝑡−1, 𝑐)

𝑦0 𝑦1 𝑦𝑇−1

RNN Encoder-Decoder Issues
𝑦0 𝑦1 𝑦𝑇−1

Attention-based Encoder-Decoder

New Encoder

New Decoder
𝑦𝑖_1

Alignment Model

Calculate context:

𝑦𝑖−1

Output model

Previous output

current hidden state

Current context

Architecture: Fully connected + Maxout

𝑦𝑖_1

Update hidden state

Previous hidden state

Previous output

Current context

Architecture: GRU

𝑦𝑖_1

Quantitative Results

Alignment between the Words

Attention Seq2Seq

• https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-
%20Neural%20Machine%20Translation%20by%20Jointly%20Learning
%20to%20Align%20and%20Translate.ipynb

https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb

Attention is All You Need

Sequence2Sequence (Encoder-Decoder)

𝑦0 𝑦1 𝑦𝑇−1

Attention-Based Encoder-Decoder
𝑦𝑖_1

Encoder Attention-based Decoder

Limitations of Previous Seq2Seq Models

• The encoders or decoders in the sequence to sequence models are
generally implemented with recurrent neural networks
• Sequential computation

• Non-parallel

Attention is all you need (Vaswani et al. 2017)

• The Transformer (Vaswani et al. 2017)
• Only attention is used in both encoder and decoder

• Parallelizable

Encoder

• A stack of N=6 identical layers

• Each layer are composed of two sublayers
• Multi-head self-attention

• Position-wise fully connected feed-forward
network

• Residual connection followed by
normalization are used in both sublayers
• 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 𝑥)

Multi-head Attention

• Attention
• Mapping a query and a set of key-value pairs to an output

• Query, Keys, and Values are all vectors

• The output is a weighted sum of the values, with the weights calculated
according to a softmax function depending on the similarities between
queries and keys

Multi-head Attention

• Scaled Dot-Product Attention
• Avoiding pushing the softmax function into regions

where it has extremely small gradients.

d_k: dimension of keys and queries

Multi-head Attention

• Multi-head Attention
• Linearly project the queries, keys, and values h times

with different, learned linear projects respectively

• Concatenate the outputs and project again

Position-wise Feed-Forward Network

• Applied to each position separately and identically
• Two linear transformations with RELU as the activation in between

• Different parameters are used across different layers

Positional Encoding
• Without recurrence and convolution, the order information is lost

• Need to encode the relative or absolute position of the tokens in the
sequence

• Position encodings are added to both the embeddings of the tokens
in both encoder and decoder

• Sine and cosine functions of different frequencies are used:

• Pos is the position and i is the dimension

Decoder

• N=6 identical layers

• Each layer
• Masked multi-head attention

• Position-wise fully connected feed-forward
network

• Multi-head attention over the output of the
encoder stack

• Residual connection followed by
normalization are used in all the three
sublayers

Discussion: advantages of Self-Attention

• Complexity

• Short-range v.s. long-range dependency

• Interpretability

Results

Thanks!

	Slide 1: Attention, Transformers
	Slide 2: Sequence2Sequence (Encoder-Decoder)
	Slide 3: Sequence to Sequence Model
	Slide 4: Encoder: one Recurrent Neural Network
	Slide 5: Decoder: another Recurrent Neural Network
	Slide 6: Decoder: another Recurrent Neural Network
	Slide 7: RNN Encoder-Decoder Issues
	Slide 8: Attention-based Encoder-Decoder
	Slide 9: New Encoder
	Slide 10: New Decoder
	Slide 11: Alignment Model
	Slide 12: Output model
	Slide 13: Update hidden state
	Slide 14: Quantitative Results
	Slide 15: Alignment between the Words
	Slide 16: Attention Seq2Seq
	Slide 17: Attention is All You Need
	Slide 18: Sequence2Sequence (Encoder-Decoder)
	Slide 19: Attention-Based Encoder-Decoder
	Slide 20: Limitations of Previous Seq2Seq Models
	Slide 21: Attention is all you need (Vaswani et al. 2017)
	Slide 22: Encoder
	Slide 23: Multi-head Attention
	Slide 24: Multi-head Attention
	Slide 25: Multi-head Attention
	Slide 26: Position-wise Feed-Forward Network
	Slide 27: Positional Encoding
	Slide 28: Decoder
	Slide 29: Discussion: advantages of Self-Attention
	Slide 30: Results
	Slide 31: Thanks!

