Attention, Transformers

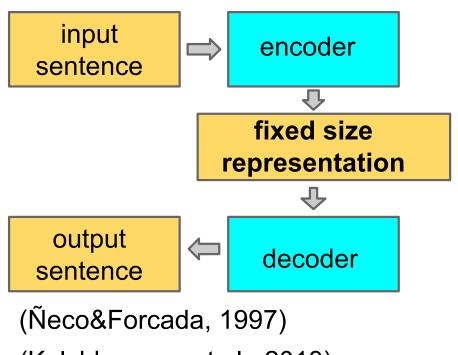
Jian Tang

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

Sequence2Sequence (Encoder-Decoder)

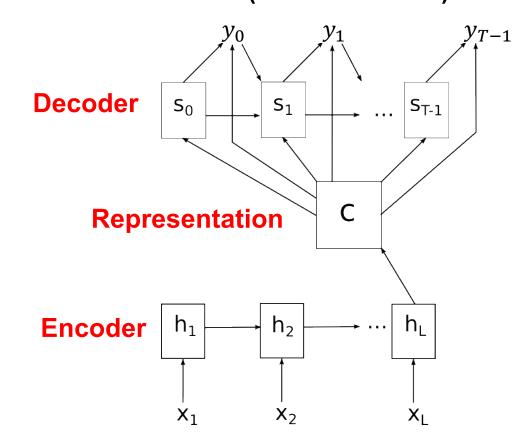


(Kalchbrenner et al., 2013)

(Cho et al., 2014)

(Sutskever et al., 2014)

RNN Encoder-Decoder (Cho et al. 2014):



Sequence to Sequence Model

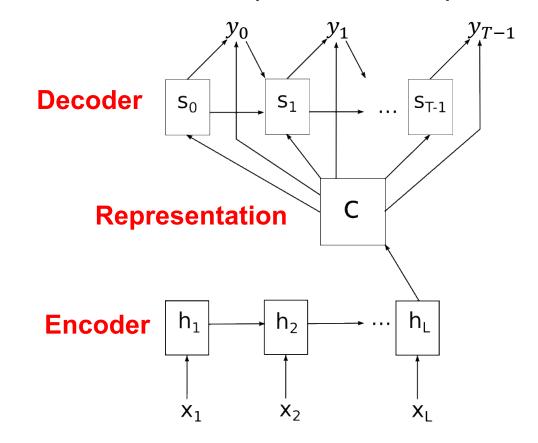
• Given an input sequence $\mathbf{x} = (x_1, x_2, ..., x_T)$, we want to map it to an output sequence $\mathbf{y} = (y_1, y_2, ..., y_T)$. We are essentially trying to model the conditional probability

$$p(\mathbf{y}|\mathbf{x}) = p(y_1, y_2, ..., y_{T'}|x_1, x_2, ..., x_T)$$

Encoder: one Recurrent Neural Network

- C is the last hidden state of input sequence
 - summary of the input sequence

RNN Encoder-Decoder (Cho et al. 2014):



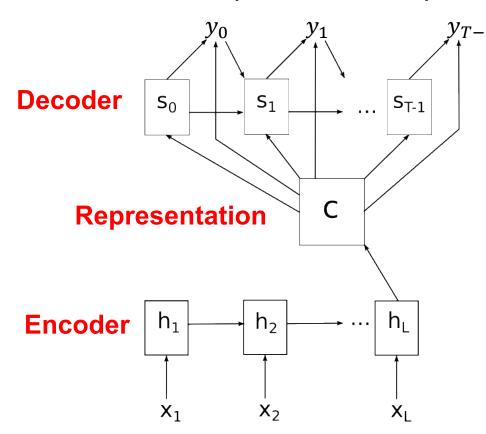
Decoder: another Recurrent Neural Network

- Decode the output sequence **y** based on
- the input sequence **x**

$$p(y|x) = p(y_1, y_2, ..., y_{T'}|x_1, x_2, ...$$

 $p(y|x) = p(y_1, y_2, ..., y_{T'}|c)$

RNN Encoder-Decoder (Cho et al. 2014):

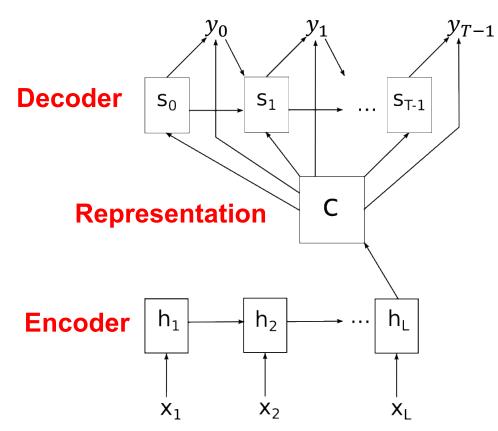


Decoder: another Recurrent Neural Network

- Decode the output sequence y based on RNN Encoder-Decoder (Cho et al. 2014):
- the input sequence **x**

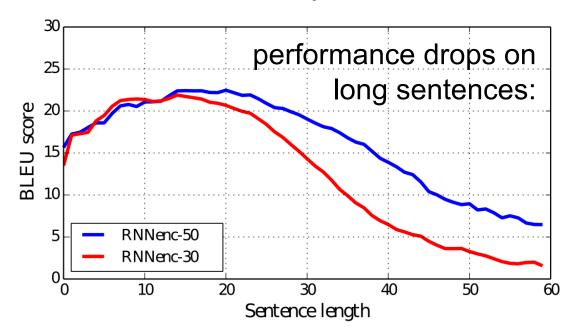
$$\boldsymbol{s}_t = f(\boldsymbol{s}_{t-1}, \boldsymbol{y}_{t-1}, \boldsymbol{c})$$

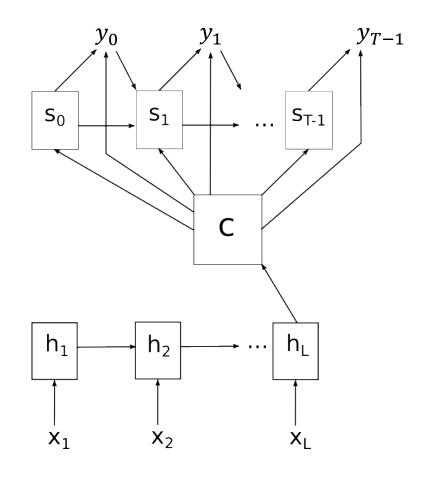
$$p(y_t|y_{t-1}, y_{t-2}, ..., y_1, c) = g(s_t, y_{t-1}, c)$$



RNN Encoder-Decoder Issues

- has to remember the whole sentence
- fixed size representation can be the bottleneck
- humans do it differently





Attention-based Encoder-Decoder

Tell Decoder what is now translated:

The agreement on European Economic Area was signed in August 1992.

L'accord sur ???

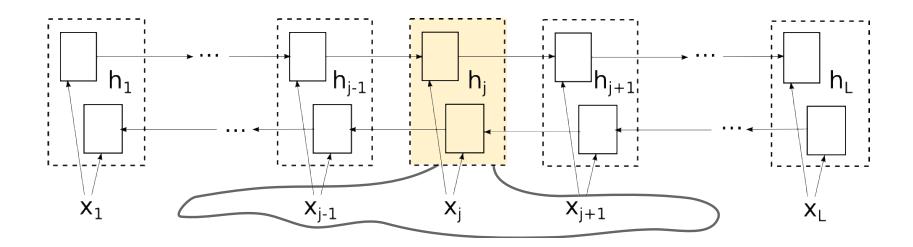
L'accord sur l'Espace économique européen a été signé en ???

Have such hints computed by the net itself!

New Encoder

Bidirectional RNN: h_j contains x_j together with its context $(..., x_{j-1}, x_{j+1}, ...)$.

(h₁, ..., h₁) is the new *variable-length* representation instead of *fixed-length* c.



New Decoder

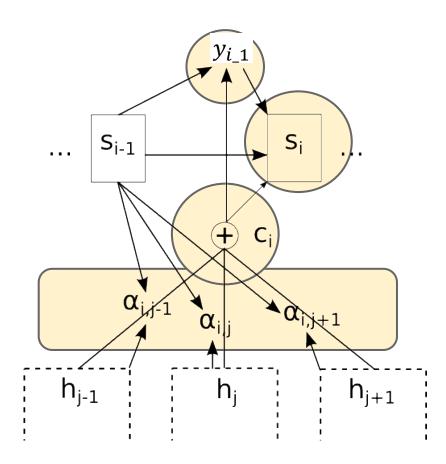
Step i:

compute alignment

compute context

generate new output

compute new decoder state



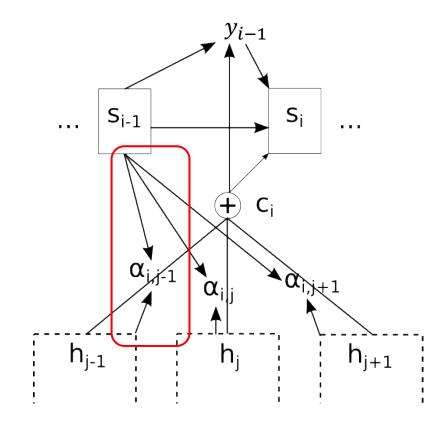
Alignment Model

$$e_{ij} = v^T \tanh(W s_{i-1} + V h_j)$$
 (1)

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum\limits_{k=1}^{L} \exp(e_{ik})}$$
 (2)

- nonlinearity (tanh) is crucial!
- simplest model possible
- Vh_j is precomputed => quadratic complexity with low constant

Calculate context:
$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$
.

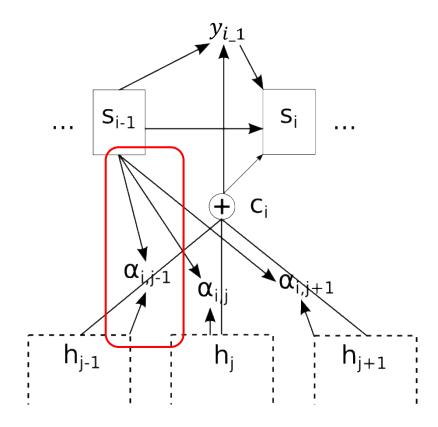


Output model

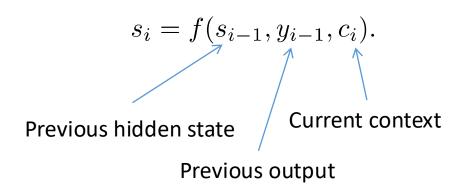
$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x})=g(y_{i-1},s_i,c_i),$$
 Previous output Current context

current hidden state

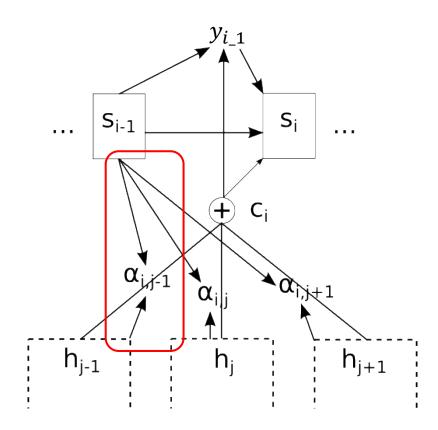
Architecture: Fully connected + Maxout



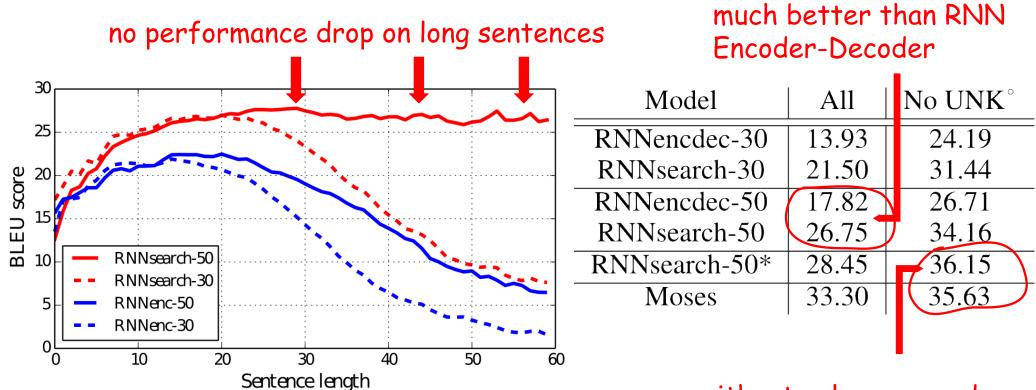
Update hidden state



Architecture: GRU

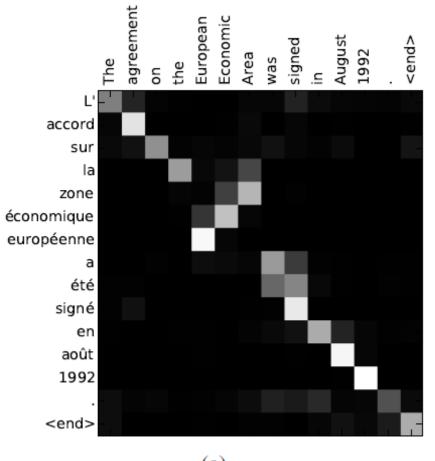


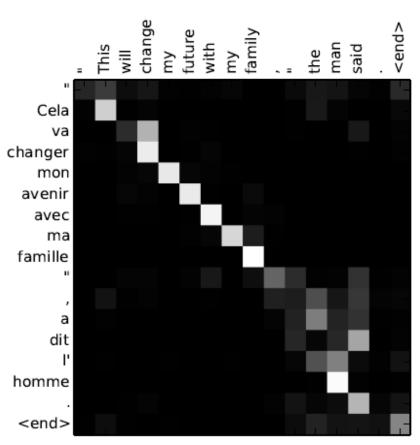
Quantitative Results



without unknown words comparable with the SMT system

Alignment between the Words





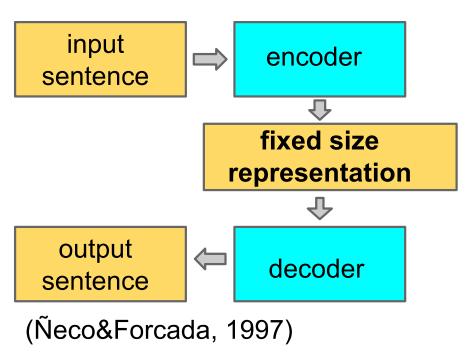
(a)

Attention Seq2Seq

 https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20-%20Neural%20Machine%20Translation%20by%20Jointly%20Learning %20to%20Align%20and%20Translate.ipynb

Attention is All You Need

Sequence2Sequence (Encoder-Decoder)

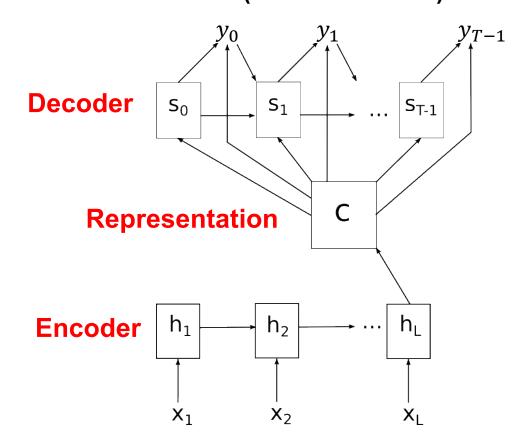


(Kalchbrenner et al., 2013)

(Cho et al., 2014)

(Sutskever et al., 2014)

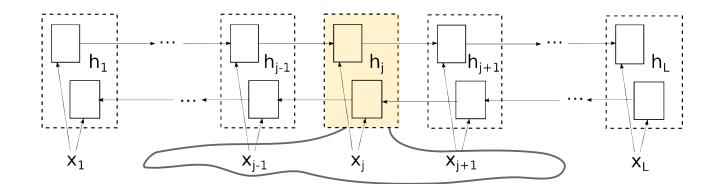
RNN Encoder-Decoder (Cho et al. 2014):

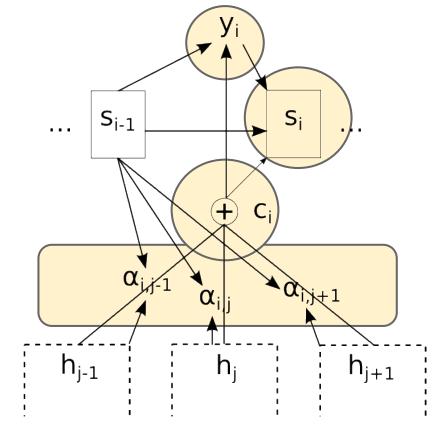


Attention-Based Encoder-Decoder

Bidirectional RNN: h_j contains x_j together with its context (..., $x_{j-1}, x_{j+1}, ...$).

 $(h_1, ..., h_L)$ is the new *variable-length* representation instead of *fixed-length* c.





Encoder

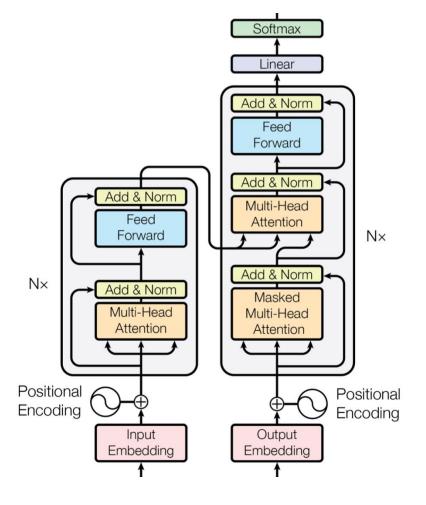
Attention-based Decoder

Limitations of Previous Seq2Seq Models

- The encoders or decoders in the sequence to sequence models are generally implemented with recurrent neural networks
 - Sequential computation
 - Non-parallel

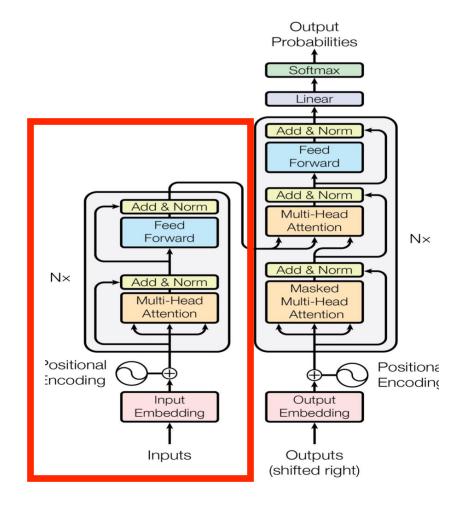
Attention is all you need (Vaswani et al. 2017)

- The Transformer (Vaswani et al. 2017)
 - Only attention is used in both encoder and decoder
 - Parallelizable



Encoder

- A stack of N=6 identical layers
- Each layer are composed of two sublayers
 - Multi-head self-attention
 - Position-wise fully connected feed-forward network
- Residual connection followed by normalization are used in both sublayers
 - LayerNorm(x + Sublayer(x))



Multi-head Attention

Attention

- Mapping a query and a set of key-value pairs to an output
- Query, Keys, and Values are all vectors
- The output is a weighted sum of the values, with the weights calculated according to a softmax function depending on the similarities between queries and keys

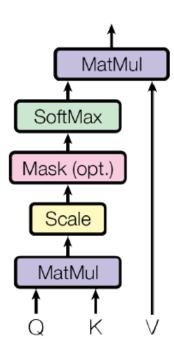
Multi-head Attention

- Scaled Dot-Product Attention
 - Avoiding pushing the softmax function into regions where it has extremely small gradients.

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{d_k: dimension of keys and queries}$$

Scaled Dot-Product Attention

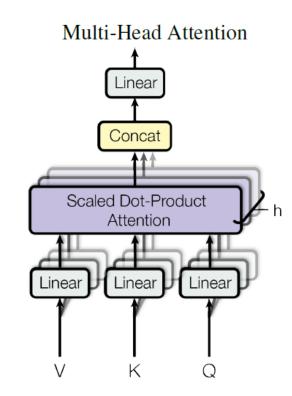


Multi-head Attention

- Multi-head Attention
 - Linearly project the queries, keys, and values h times with different, learned linear projects respectively
 - Concatenate the outputs and project again

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.



Position-wise Feed-Forward Network

- Applied to each position separately and identically
 - Two linear transformations with RELU as the activation in between
 - Different parameters are used across different layers

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Positional Encoding

- Without recurrence and convolution, the order information is lost
- Need to encode the relative or absolute position of the tokens in the sequence
- Position encodings are added to both the embeddings of the tokens in both encoder and decoder
- Sine and cosine functions of different frequencies are used:

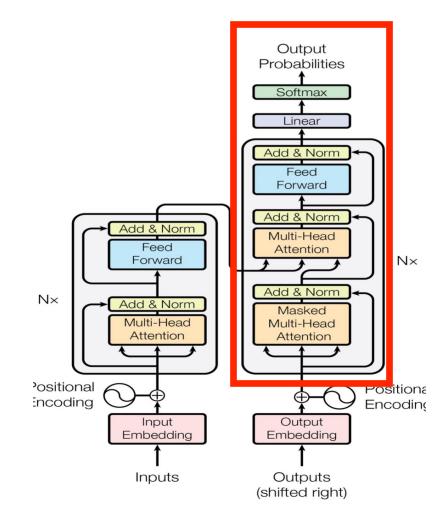
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Pos is the position and i is the dimension

Decoder

- N=6 identical layers
- Each layer
 - Masked multi-head attention
 - Position-wise fully connected feed-forward network
 - Multi-head attention over the output of the encoder stack
- Residual connection followed by normalization are used in all the three sublayers



Discussion: advantages of Self-Attention

- Complexity
- Short-range v.s. long-range dependency
- Interpretability

Layer Type	Complexity per Layer	Sequential Maximum Path Length	
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Madal	BLEU		Training C	Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.8	2.3 ·	$2.3 \cdot 10^{19}$	

Thanks!