
Deep Learning and Applications

Homework 3

Due date: Apr. 20, 2020

1 Task Description

In class, we have learned several important graph analysis approaches, including
node embedding methods (e.g., LINE, DeepWalk), graph neural networks (e.g.,
GCN, GAT) and graph visualization techniques (e.g., t-SNE, LargeVis).

To practice with those approaches, in this homework you are required to
leverage them for some real applications, including graph embedding + graph
visualization, and graph neural networks for node classification.

There are two sections in our homework:

• Part 1: Node Embedding + Embedding Visualization.

• Part 2: Graph Neural Networks for Node Classification.

You could find the details in the Colab file.

2 Instruction on Part 1

In this part, we would try node embedding method on a social network. The
goal is to get familiar with the pipelines of node embedding and visualization.
Specifically, you can use any existing package (e.g., GraphVite, PyTorch Big-
Graph, Open NE) to implement node embedding training. We will evaluate the
learned embeddings on node classification task, which tests the predictive power
of embeddings. Besides, you are also expected to visualize the node embeddings
in a 2D plot using existing tools (e.g., GraphVite, tSNE-CUDA, scikit-learn),
and perform some qualitative analysis.

3 Instruction on Part 2

For this part, we will use the Cora dataset, which is widely used for evaluating
graph neural networks. The dataset is available at the Google drive link. You
could find several files there. Among those files, net.txt provides the edges
between different nodes, and the three columns correspond to source nodes,
target nodes and edge weights respectively. For feature.txt, it gives the features

1

https://colab.research.google.com/drive/1f0_enZ8Y4OBSfHJSPcXgBNjsXgzlUlX-#forceEdit=true&sandboxMode=true
https://drive.google.com/open?id=1wVguWcuHEfga09XgLPvC_PkRXTGEEInW


of nodes. For label.txt, it provides the node labels. train.txt, valid.txt, test.txt
provide the training nodes, validation nodes and test nodes respectively. The
goal is to train a model on the training nodes, and further apply the model for
classifying test nodes. In this process, you may use the validation nodes for
hyper-parameter tuning and early stopping.

For implementation, you may choose the Graph Convolutional Network
(GCN) to implement, as it is widely used in many different applications. Below
are some nice GitHub repositories you could refer to for the implementation:
GCN by Kipf, GAT by Grattarola.

To better understand the model you implement, we will further do the fol-
lowing performance analysis:

• Performance w.r.t. the number of layers.
GCN typically uses only a few layers for information propagation. Oth-
erwise, they may suffer from the over-smoothing problem. To look into
that, please draw a table to compare the performance of the GCN model
with respect to the number of propagation layers, e.g., from 1 layer to 10
layers. Also, please write down your observation and the potential reason
based on your thinking.

• Performance w.r.t. the hidden dimension.
Another important hyperparameter for GCN is the dimension of hidden
layers. In this part, you may try different dimensions for the hidden layers,
e.g., 8, 16, 32, 64, 128. Also, please write down your observation and the
potential reason based on your thinking.

4 Handing in Your Answer

For this homework, you could submit your answer by filling in the Google form.

5 Evaluation

For all the three parts of the homework, we will check your codes and your
analysis. As long as your implementation is correct and your analysis makes
sense, you will get all the points.

2

https://github.com/tkipf/pygcn
https://github.com/Diego999/pyGAT
https://arxiv.org/pdf/1812.08434.pdf
https://docs.google.com/forms/d/e/1FAIpQLSd3LoRVwJ1Nc8hogOv76Y6_JbfPTdRzxUNfaU1ZV9GVaIZDSA/viewform?usp=sf_link

	Task Description
	Instruction on Part 1
	Instruction on Part 2
	Handing in Your Answer
	Evaluation

