Skip to the content.

Schedule for In-class Presentations

Date Topic Suggested Readings Reference Homework
Jan. 5,6 Introduction (Eng)
Mathematics (Eng)
ML Basics (Eng)
Introduction (Fr)
Mathematics (Fr)
ML Basics (Fr)
Deep Learning Book
Chap. 2
Chap. 3
Chap. 5
Jan. 12,13 Feedforward Neural Networks & Optimization Tricks (Eng)
Feedforward Neural Networks & Optimization Tricks (Fr)
Deep Learning Book
Chap. 6
Chap. 7
Chap. 8
Jan. 19,20 PyTorch (Eng)
Notebook Part I (Eng)
Notebook Part II (Eng)
PyTorch (Fr)
Notebook (Fr)
Python Numpy Tutorial
Neural Network from Scratch
Dive into Deep Learning
Jan. 26,27 Convolutional Neural Networks & Recurrent Neural Networks (Eng)
Convolutional Neural Networks & Recurrent Neural Networks (Fr)
Deep Learning Book
Chap. 9
Chap. 10
ResNet
GRU
DenseNet
Feb. 2,3 Natural Language Processing I (Eng)
Natural Language Processing I (Fr)
Word2Vec
SGNS
Feb. 9,10 Natural Language Processing II (Eng)
Natural Language Processing II (Fr)
CNN for sentence classification
Seq2Seq
Tree LSTM
CNN Multi-task Learning
Instruction (Eng)
Instruction (Fr)
Feb. 16,17 Q & A for Projects
Mar. 2,3 Natural Language Processing III (PDF, Eng)
Natural Language Processing III (PPT/Keynote, Eng)
Natural Language Processing III (PDF, Fr)
Natural Language Processing III (PPT/KetNote, Fr)
Attention Seq2Seq
Transformer
Memory Networks
SQuAD Dataset
GLUE Benchmark
Mar. 9,10 Natural Language Processing IV (Eng)
Natural Language Processing IV (Fr)
BERT
GPT-3
RoBERTa
Instruction (Eng & Fr)
Mar. 16,17 Graph Representation Learning I (Eng)
Graph Representation Learning I (Fr)
DeepWalk
LINE
Node2Vec
Metapath2Vec
LargeVis
Mar. 23,24 Graph Representation Learning II (Eng)
Graph Representation Learning II (Fr)
Graph Convolutional Networks
Graph Attention Networks
Neural Message Passing
Graph Isomorphism Network
GraphSAGE
PinSAGE
HAN
Marh. 30,31 AI for drug discovery (Eng)
Apr. 6,7 Poster Sessions