Skip to the content.

Schedule for In-class Presentations

Date Topic Suggested Readings Reference Homework
Jan. 11,12 Introduction (Eng)
Mathematics (Eng)
ML Basics (Eng)
Introduction (Fr)
Mathematics (Fr)
ML Basics (Fr)
Deep Learning Book
Chap. 2
Chap. 3
Chap. 5
Jan. 18,19 Feedforward Neural Networks & Optimization Tricks (Eng)
Feedforward Neural Networks & Optimization Tricks (Fr)
Deep Learning Book
Chap. 6
Chap. 7
Chap. 8
Jan. 25,26 CNNs and RNNs (Fr)
PyTorch Tutorial (Slides, Eng)
Notebook Part I (Eng)
Notebook Part II (Eng)
Python Numpy Tutorial
Neural Network from Scratch
Dive into Deep Learning
HW-1 (Eng)
Devoir-1 (Fr)
Feb. 1,2 CNNs and RNNs (Eng)
Introduction to Pytorch (Fr)
Deep Learning Book
Chap. 9
Chap. 10
ResNet
GRU
EfficientNet
Feb. 8,9 RNNs (Fr)
Natural Language Processing I (Eng)
Word2Vec
SGNS
Feb. 15,16 Natural Language Processing I (Fr)
Natural Language Processing I (Eng)
CNN for sentence classification
Seq2Seq
T5
CNN Multi-task Learning
Feb. 22,23 No Class (Projects proposal ready)
Mar. 1,2 Break
Mar. 8,9 Natural Language Processing III (Eng)
Natural Language Processing III (Fr)
Attention Seq2Seq
Transformer
XLNet
GLUE Benchmark
GPT-3
HW-2 (Eng)
Devoir-2 (Fr)
Mar. 15,16 Natural Language Processing III (Eng)
Generative models (Fr)
BERT
GPT-3
RoBERTa
Mar. 22,23 Graph Representation Learning I (Eng)
Graph Representation Learning I (Fr)
DeepWalk
LINE
Node2Vec
Metapath2Vec
LargeVis
Mar. 29,30 Graph Representation Learning II (Eng)
Graph Representation Learning II (Fr)
Graph Convolutional Networks
Graph Attention Networks
Neural Message Passing
Graph Isomorphism Network
RGCN
SGC
Graph Transformer
Apr. 5,6 AI Drug Discovery, Review
Apr. 12,13 Poster Session